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We map out the QCD crossover line Tc(µB)
Tc(0)

= 1−κ2

(
µB

Tc(0)

)2
−κ4

(
µB

Tc(0)

)4
+O(µ6

B) for the first

time up to O(µ4
B) for a strangeness neutral system by performing a Taylor expansion of chiral

observables in temperature T and chemical potentials µ . At vanishing chemical potential, we
report a crossover temperature Tc(0) = (156.5±1.5) MeV defined by the average of several chi-
ral susceptibilities. For a system with thermal conditions appropriate for a heavy-ion collision,
we determined a curvature from the subtracted condensate as κ2 = 0.0120(20) and from the dis-
connected susceptibility as κ2 = 0.0123(30). The next order κ4 is significantly smaller. We also
report the crossover temperature as a function of the chemical potentials for: baryon-number,
electric charge, strangeness and isospin. Additionally, we find that Tc(µB) is in agreement with
lines of constant energy density and constant entropy density. Along this crossover line, we study
net baryon-number fluctuations and show that their increase is substantially smaller compared
to that obtained in HRG model calculations. Similarly, we analyze chiral susceptibility fluctua-
tions along the crossover line and show that these are constant. We conclude that no signs for a
narrowing of the crossover region can be found for baryon chemical potential µB < 250 MeV.
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The curvature of the QCD crossover line

1. Introduction

We present results from our study of the crossover of quantum chromodynamics (QCD) in
(2+1)-flavor QCD as a function of the baryon chemical potential µB. We base this analysis on find-
ings [1, 2] that at vanishing chemical potentials strong interaction matter does not have a genuine
phase transition from a gas of hadrons and their resonances (HRG) to a quark-gluon plasma (QGP).
Our goal is to understand up to which baryon chemical potential the crossover is still analytic. In
other words, we are searching for signs of a second order QCD critical point which would be the
start of a genuine first order phase transition line. In the following, we consider chiral observ-
ables as the crossover and a possible phase transition are supposed to be closely related to chiral
symmetry restoration. Particularly important are the subtracted chiral condensate

Σsub ≡ ms(Σu +Σd)− (mu +md)Σs with Σ f =
T
V

∂

∂m f
lnZ , (1.1)

the subtracted and disconnected chiral susceptibility

χsub ≡
T
V

ms

(
∂

∂mu
+

∂

∂md

)
Σsub , χdisc = m2

s (χu,disc +χd,disc +2χud) (1.2)

with

χ f g =
∂

∂m f
Σg and χf,disc =

T
V

1
16

[〈(
TrM−1

f

)2
〉
−
〈

TrM−1
f

〉2
]
. (1.3)

Here, M f is the fermion matrix for quark flavor f . The observables are shown in Fig. 1. Their
Taylor expansions in chemical potentials have been described in [3]. If a critical point exists, we
should be able to observe scaling with the critical exponents of a three-dimensional Ising model at
finite baryon chemical potential. When approaching a critical point, a significant increase of chiral
susceptibility fluctuations along the crossover must be observed. We have generated gauge field
ensembles using a RHMC for 4 lattice volumes with Nτ = 6,8,12 and 16 in a temperature range
from 135 MeV to 175 MeV. The simulations have been performed using the tree-level improved
HISQ formulation with two degenerate light quarks and a heavier strange quark set to their physical
values corresponding to a pion mass of about 138 MeV. The scale has been set using the kaon decay
constant [4].

2. The QCD crossover line

The crossover line can be parameterized as

Tc(µB)

T0
= 1−κ2

(
µB

T0

)2

−κ4

(
µB

T0

)4

+O(µ6
B) , (2.1)

where T0 is the crossover temperature at zero chemical potential given by so-called pseudo-critical
temperatures. Their continuum extrapolations are shown in Fig. 1 (right). In the continuum, all
considered pseudo-critical temperatures converge to similar values. This is why we quote a com-
bined value of T0 = (156.5±1.5) MeV. This average is in agreement with previous results [5, 6, 7]
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Figure 1: The subtracted chiral susceptibility (top left), the disconnected chiral susceptibility (top right) and
the subtracted chiral condensate (bottom left) as a function of the temperature for different Nτ . The data is
plotted in two-flavor formulation and normalized using the kaon decay constant fK . The colored bands are
given by AIC weighted Padé approximations which include statistical and systematic errors. In the bottom
right plot, we show the obtained chiral crossover temperatures Tc(µB = 0) as a function of 1/N2

τ for the
subtracted condensate Σsub (Tc defined by inflection point), the subtracted susceptibility χsub (Tc defined by
maximum), the disconnected susceptibility χdisc (Tc defined by maximum), the second µ̂B derivative of Σsub

(Tc defined by minimum) and the second µ̂B derivative of χdisc (Tc defined by zero). All chiral observables
define pseudo-critical temperatures. The combined continuum value (156.5± 1.5) MeV in the gray box is
an unweighted average of all observables which includes a 1 MeV error for setting the scale. This combined
value resembles systematic effects (ambiguity in defining a pseudo-critical temperature), statistical and scale
setting errors.

obtained with different lattice formulations. The curvature coefficients κn can be obtained by re-
quiring that e.g. each order µn

B in d/dT (χdisc(T, µ̂B)/ f 4
K) ≡ 0 vanishes [3]. In the following, we

derive κ2 from the chiral susceptibility for vanishing µQ and µS. First, we expand the susceptibility
in T and µ̂B around (T0, µ̂B = 0). The relevant terms for κ2 are given by

χdisc(T,µB)

f 4
K

= cχ

0

∣∣
(T0,0)

+
∂cχ

0
∂T

∣∣∣∣
(T0,0)

(T −T0)+
1
2

∂ 2cχ

0
∂T 2

∣∣∣∣
(T0,0)

(T −T0)
2 (2.2)

+
1
2

cχ

2

∣∣
(T0,0)

µ̂
2
B +

1
2

∂cχ

2
∂T

∣∣∣∣
(T0,0)

(T −T0)µ̂
2
B + ...

with

cχ
n =

∂ χdisc/ f 4
K

∂ µ̂n
B

∣∣∣∣
µ=0

and µ̂ =
µ

T
. (2.3)
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Taking into account that the first T derivative of cχ

0 vanishes at T0 and neglecting terms which have
no contribution to order µ2

B, we obtain for the T derivative of the Taylor expansion

d
dT

χdisc(T,µB)

f 4
K

=
∂ 2cχ

0
∂T 2

∣∣∣∣
(T0,0)

(T −T0)− cχ

2

∣∣
(T0,0)

µ2
B

T 3 +
1
2

∂cχ

2
∂T

∣∣∣∣
(T0,0)

µ̂
2
B + ... (2.4)

=

(
1
2

∂cχ

2
∂T

∣∣∣∣
(T0,0)

1
T 2

0
− ∂ 2cχ

0
∂T 2

∣∣∣∣
(T0,0)

κ2

T0
− cχ

2

∣∣
(T0,0)

1
T 3

0

)
µ

2
B +O(µ4

B) .

In the last step, we used that Eq. (2.4) is only equal to zero along the crossover line, i.e. it has to be
evaluated at T = Tc(µB). By demanding that order O(µ2

B) vanishes, we find that

κ
χ

2 =
1

2T 2
0

T0
∂cχ

2
∂T

∣∣∣
(T0,0)

−2 cχ

2

∣∣
(T0,0)

∂ 2cχ

0
∂T 2

∣∣∣
(T0,0)

. (2.5)

Similarly, we can derive κ2 from the subtracted condensate by requiring that each order µn
B in

d2/dT 2(Σsub(T, µ̂B)/ f 4
K)≡ 0 vanishes. It is given by

κ
Σ
2 =

1
2T 3

0

6 cΣ
2

∣∣
(T0,0)

−4T0
∂cΣ

2
∂T

∣∣∣
(T0,0)

+T 2
0

∂ 2cΣ
2

∂T 2

∣∣∣
(T0,0)

∂ 3cΣ
0

∂T 3

∣∣∣
(T0,0)

. (2.6)

The T derivatives of cχ
n and cΣ

n can be obtained analytically by derivating fits of the corresponding
coefficient. The next order κ4 can be derived from the disconnected susceptibility by requiring that
O(µ4

B) in Eq. (2.4) vanishes. It reads

κ
χ

4 =
1

24T 2
0

−72κ
χ

2 cχ

2 −4cχ

4 +T0

[
∂cχ

4
∂T +12κ

χ

2

(
4 ∂cχ

2
∂T −T0

∂ 2cχ

2
∂T 2 +κ

χ

2 T 2
0

∂ 3cχ

0
∂T 3

)]
∂ 2cχ

0
∂T 2

(2.7)

where all coefficients and their derivatives have to be evaluated at (T0, µ̂B = 0). For the subtracted
condensate the 4th order curvature coefficient is given by

κ
Σ
4 =

288κΣ
2 cΣ

2 +20cΣ
4 −216T0κΣ

2
∂cΣ

2
∂T −8T0

∂cΣ
4

∂T
1

24T 3
0

∂ 3cΣ
0

∂T 3

+
T 2

0

(
∂ 2cΣ

4
∂T 2 +12κΣ

2

(
6 ∂ 2cΣ

2
∂T 2 −T0

∂ 3cΣ
2

∂T 3 +κΣ
2 T 2

0
∂ 4cΣ

0
∂T 4

))
1

24T 3
0

∂ 3cΣ
0

∂T 3

. (2.8)

The coefficients cχ
n and cΣ

n have been derived in [3]. In Fig. 2, we compare the parameterization
of the crossover line with results on chemical freeze-out temperatures extracted from heavy-ion
collision experiments such as ALICE [9] and STAR [10]. The mean of the ALICE freeze-out tem-
perature of 156.5± 1.5 MeV agrees with our crossover line at almost vanishing baryon chemical
potential. The STAR data seems to extrapolate to a significantly higher freeze-out temperature re-
sulting in values well above our crossover line which suggests that both cannot hold simultaneously.
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Figure 2: The crossover temperature Tc(µB) (left) as a function of the baryon chemical potential µB for a
strangeness neutral system with nQ/nB = 0.4 including continuum extrapolated corrections (yellow band)
up to O(µ4

B). Here, nQ is the mean electric charge density and nB the mean net baryon-number density. All
required expansion coefficients κn have been determined from the subtracted condensate Σsub. On top of it,
we show lines of constant physics for energy density ε and entropy density s taken from [8]. The data points
represent chemical freeze-out parameters extracted from the ALICE [9] and STAR [10] experiments. The
right figure compares the crossover curvature coefficients κ2 and κ4 for systems with different constrains.
Here, the crossover line is defined as Tc(µX )/T0 = 1− κX

2 (µX/T0)
2 − κX

4 (µX/T0)
4 +O(µ6

X ) where T0 is
the crossover temperature at zero chemical potentials and X is a placeholder for baryon-number B, electric
charge Q, strangeness S and isospin I. We also show results of the curvature along µB with the constrains
nS = 0 and nQ/nB = 0.4. The coefficients have been determined from a Taylor expansion of χdisc. Extracting
these coefficients from Σsub gives similar results. The values are listed in [3].

However, previous results [5, 6, 7, 11] report curvatures which are in agreement with our crossover
line. Additionally, we compare the crossover line to lines of constant physics (LCPs) from lattice
QCD simulations [8]. The LCP curvatures from energy density and entropy density agree with the
crossover curvature within errors. Furthermore, we explored the crossover along several directions
and for different constrains in the QCD phase diagram. We found that the QCD phase diagram
has very similar curvatures κ2 in all directions except along directions of non-zero electric charge
chemical potential µQ and isospin chemical potential µI . In these cases, the curvature κ2 is two
times larger (see Fig. 2).

3. Fluctuations along the QCD crossover

In the following, we study fluctuations of net baryon-number given by

σ
2
B =

∂ lnZ
∂ µ̂2

B
. (3.1)

It has been shown successfully [12] that net baryon-number fluctuations couple to the condensate
and thus would reveal critical behavior when approaching a critical point. Particularly interesting
is to study their deviations from the HRG model. Even for a finite volume, as given in heavy-ion
collisions, these fluctuations should resemble some critical behavior in the vicinity of a critical
point, i.e. show substantially larger fluctuations compared to a HRG. The relative change of σ2

B can
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Figure 3: The relative change of net baryon-number fluctuations σ2
B (left) along the crossover line Tc(µB) as

a function of µB for a system with strangeness neutrality and nQ/nB = 0.4. Here, the curvature of Tc(µB) has
been determined from the subtracted chiral condensate Σsub. The blue band includes continuum extrapolated
corrections up to O(µ2

B) and the yellow band up to O(µ4
B). The corresponding mean is visualized using a

dashed line. Also shown are HRG results using a solid black line evaluated on along a curvature defined by
the mean of Tc(µB). In the right figure, we show σ2

B as function of the temperature at three values of baryon
chemical potential µB for a finite lattice with Nτ = 8 including corrections up to O(µ4

B). For vanishing
baryon chemical potential, we compare QCD results to the HRG as shown by a solid black line.
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Figure 4: The relative change of the disconnected chiral susceptibility χdisc (left) along the crossover line
as a function of µB for a system with strangeness neutrality and nQ/nB = 0.4. Here, the curvature of Tc(µB)

has been determined from χdisc. The blue band includes continuum extrapolated corrections up to O(µ2
B)

and the yellow band up to O(µ4
B). In the right figure, we show χdisc as function of the temperature at three

values of baryon chemical potential µB for a finite lattice with Nτ = 8 including corrections up to O(µ6
B).

be expressed in a Taylor series

σ2
B(Tc(µB),µB)−σ2

B(T0,0)
σ2

B(T0,0)
= λ2

(
µB

T0

)2

+λ4

(
µB

T0

)4

+ O(µ6
B) , (3.2)

where the expansion coefficients λn can be determined using lattice QCD. We have continuum
extrapolated these coefficients up to O(µ4

B) which are used in Fig. 3 to visualize the relative change
along Tc(µB). For the strangeness neutral case, the fluctuations are at least a factor two smaller
compared to a HRG. Given that Taylor expansions for baryon-number fluctuations in the HRG
model have an infinite radius of convergence and substantially larger fluctuations compared to our
lattice results, we conclude that it is unlikely that a QCD critical point can be found for µB smaller
than 250 MeV along the crossover line. Similarly, we have studied chiral susceptibility fluctuations
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along the crossover line. As can be seen from Fig. 4, this analysis shows a constant peak height for
χdisc, i.e. no significant change along the crossover line. This suggests that for µB < 250 MeV no
signs for a narrowing of the crossover region or increasing correlation length have been observed.
In addition, we also measured 6th order expansion coefficients for a fixed lattice spacing and found
that these higher order corrections are negligible for µB < 250 MeV for χdisc and σ2

B along the
crossover line.
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