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1. Introduction

The exploration of the structure of the phase diagram of strongly interacting matter is an active
field of research both in the experimental and theoretical nuclear physics communities. For van-
ishing values of the chemical potential it is well established that the chiral transition is a crossover
at physical values of the two light and the heavier strange quark masses. However, in the limit of
vanishing light quark masses the nature of the chiral transition is not yet established undoubtedly.
In particular, it is not settled whether the transition is 2" order or becomes 1* order below a cer-
tain critical value of the light quark masses. Earlier work from Pisarski and Wilczek [1] suggests
that for two massless flavors (N = 2) the chiral transition will be 24 order belonging to the O(4)
universality class if the axial U (1) symmetry effectively gets restored only at temperatures higher
than that for SU (2),, x SU(2)g flavor chiral symmetry restoration. If the residual Uy (1) breaking is
small already at the latter temperature the transition may become 1% order.

Studies with unimproved staggered fermions [2, 3, 4] show that the chiral transition is 1%
order below a certain critical quark mass, which led to a possible version of the phase diagram in
the light and strange quark mass plane (Columbia plot) as shown in Fig. 1 (left). However when
using improved staggered fermion actions, e.g. HISQ or stout, no 1* order transitions is found even
for quite small quark masses, corresponding to Goldstone pion masses as small as 50 MeV|[5, 6].
This may imply that the chiral phase transition in (2+1)-flavor QCD is 2"¢ order in the limit of
vanishing light up and down quark masses.

The calculations performed with unimproved staggered fermions [2, 3, 4] also suggest that the
region of 1° order chiral transitions increases in terms of critical quark or pion masses at non-zero
imaginary values of the chemical potential (see Fig. 1 (right)), i.e. for negative u2. Calculations
performed at the largest |ip/T| = /3 thus can set limits on m<" in the u = O plane. Here we
report on our ongoing studies of the QCD phase diagram with imaginary chemical potential and
small values of the light quark masses, keeping the strange quark mass at its physical value.

Nf=2 ]Vf =2
physical point
- -
S M//s
ms = ',-‘04° mS 3 \'l)
B . 1)
Q A O
/‘3 1st - 9&‘
1st order \»%
order. tripI;/"' >
-
e
Mayd mMaoyd

Figure 1: Sketch of possible Coloumbia plots in the u = 0 (left) and iy /T = iz/3 (right) planes.

2. Details of the Roberge-Weiss (RW) plane

At imaginary values of the chemical potential, iu, the QCD partition function still has a real
and positive fermion determinant. As the gauge fields can always be transformed by globally
multiplying all time-like gauge field variables U, 3 with an element of the center of the SU(3) group,
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the partition function is periodic under shifts

— 2n/3— w/T — w/T+2m/3, ie. Z(W/T) =Z(u/T +

&~ RW 27/3). It has been pointed out by Roberge
» s~ Endpoint 7 .. and Weiss [7] that this leads to a periodicity

T T ; at u/T = (2k+ 1)m/3 and that a phase tran-
0 n/3 2x/3 w uwT sition may occur for these values of the imag-

inary chemical potential at high temperature.
Figure 2: A possible phase diagram in the imag-
i hemical potential plane. Solid li h . L .
fmaty chemical pofentia’ plane. SO7C Anes SHow ical potential in a given Z(3) sector are known
first order phase transitions, dotted lines corre-

spond to crossover transitions and the blue points as the Roberge-Weiss (RW) planes.
indicate 2" order phase transition points. A specific scenario for phase transitions in

These particular choices of the imaginary chem-

the RW plane, consistent with the results pre-
sented here, is shown in Fig. 2. Alternative scenarios have been found in calculations with standard
staggered and also Wilson fermions, where the RW endpoint turns out to be a triple point for suf-
ficiently small values of the light quark masses and three first order transition lines would emerge
from this triple point. For Ny =2 a 1* order triple point has been found on coarse lattices with tem-
poral extent N; = 4 in calculations with standard staggered fermions below m<" ~ 400 MeV and
with the standard Wilson fermion action below m<"" ~ 930 MeV. The latter critical mass shifted

cri
to my

~ 680 MeV for N; = 6. Results thus are found to be strongly dependent on the fermion
discretization scheme and cut-off (NV;) [2, 3, 4]. It therfore is not too surprising that these results
can change drastically when using improved discretization schemes. In calculations with the stout
action and for Ny = 2 + 1 it is found that for physical pion mass the RW endpoint belongs to the
Z(2) universality class. No 1* order triple point has been found at least for m; > 50 MeV [8, 9]. In
calculations using the 2-flavor HISQ action no clear-cut results on the order of the phase transition
have been reported so far [10]. In our calculations we use the (2+1)-flavor HISQ action together
with an &'(a?) improved gauge action to examine the nature of the RW-endpoint at smaller than

physical values of the light quark masses and physical value of the strange quark mass.

3. Ising universality and finite size scaling

If the endpoint of the line of first order transitions in the RW plane is second order, it will
belong to the 3-d Z(2) universality class. Near this critical point physics can be described by an
effective Ising Hamiltonian, which characterizes the universal critical behavior of any system going
through a Z(2) transition. We define

Heff(l,h) =tE+ht , 3.1

where, ¢ and & are temperature and external field like couplings, that couple to an energy-like
operator, & and a magnetization-like operator .#. Under Z(2) transformation, & — & and .# —
— A, i.e. & remains invariant while .# changes sign. Possible choices for these operators are
the real and imaginary parts of the Polyakov loop, & ~ Re L, .# ~ Im L. However, other choices
are possible. For instance, the chiral condensate, Y, is invariant under a Z(2) transformation that
changes the imaginary part of all Wilson loops. It thus may equally well serve as the energy-like
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operator in an effective Ising Hamiltonian. We show contour plots of energy-like operators versus
the magnetization like operator in Fig. 3. They present the characteristic features of “banana-
shaped” contours known for Z(2) transitions [11], which is even more obvious for Yy than Re L.
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Figure 3: Contour plot of Re L (left) and Wy (right) versus Im L in the vicinity of the RW endpoint for
my/mg =1/27.

The logarithm of the QCD partition function defines the free energy density, f(7,u,V) =
—gan(T, 1,V), which in the vicinity of a critical point can be split into a singular and regular
part,

F b (0"t f10,6P% VR o, b~ Ne /1) + f(T, 11, V) , (3.2)

where f; is a homogeneous function in terms of the reduced temperature t = (T — T,)/T,, the
symmetry breaking field 4 = u /T — /3 and the volume V = N>. They all are expressed in units of
non-universal scale parameters #y, iy and ly. Eq. 3.2 describes the universal critical behavior close
to the critical point (z,4) = (0,0) in the RW plane. From this one may derive the scaling functions
for the order parameter M = —d f(T, 1, Ny )/dh and its susceptibility x, = —d2f(T,u,Ng)/dh>.
As the symmetry breaking field vanishes in the RW plane, 7 = 0, we may set b = N/l to obtain
the finite size scaling relations for M and y,,

M = NP f5(zotNYY) + reg. | (3.3)
xXn = ZzNg/v fx (ZotN};/v) + reg. , (3.4)

with constants zg, z; and z, that are related to the scale parameters ty, g, and ly. We also adopted the
conventional notation and normalization for the universal scaling functions of the order parameter
and the susceptibility, fG and f), respectively [12].

4. Simulation details

We have performed our calculations at imaginary chemical potential in the RW plane using
the HISQ action. This reduces ¢/(a?) cut-off effects in the staggered fermion discretization scheme
and efficiently suppresses taste-changing interactions. This provides an improved approximation
of continuum physics relative to that reached with standard staggered action at the same value of
the cut-off.
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The partition function for (2+1)-flavor QCD with two degenerate light quark masses (), a
strange quark mass (m,) and identical chemical potentials u /T = /3 for all flavors may be written
as,

Z(T,u) = / (U det[M; (i) *det[My(in))/* exp[—Sq] , (4.1)

where, M, = Duyso(ipt) +my,. For the gauge action, Si, we use the tree level improved Symanzik
action. The strange quark mass has been fixed to its physical value and the light quark masses have
been varied starting at the physical value, m;/m; = 1/27, towards chiral limit. The smallest value
used in our calculations, m;/my; = 1/160, corresponds to a Goldstone pion mass of about 55 MeV.
Some further details on our simulation parameters are given in Table 1. We vary the temperature

Nos | N; my/my mz(MeV)
8 4 1727 135

12 | 4 1/27 135

16 | 4 | 1/27,1/40,1/60 | 135,110, 90
24 | 4 | 1/27,1/40, 1/160 | 135, 110, 55

Table 1: Details of the numerical simulation parameters

in the range, T ~ T. + 0.17... Generally we generated 20,000 trajectories per T value away from 7,
and 80,000 trajectories near 7.

5. Results

5.1 Scaling in the vicinity of the RW endpoint

By varying the light quark masses in our simulations we examined the behavior of the order
parameter M and the susceptibility J;, as function of the spatial volume. Even at the smallest quark
mass value used in our simulations, m;/mg = 1/160, we find that the peak of the susceptibilities at
T. rises significantly slower than the N2 divergence that would be expected for a first order phase
transition. We thus compared our results to the expected scaling behavior for a transition in the
3-d, Z(2) universality class. In Fig. 4 (top) we show results for the order parameter M = (|ImL|)
(top, left) and the order parameter susceptibility, ), (top, right), calculated on lattices with spatial
extent Ng = 12, 16, and 24 and m;/ms = 1/27. These results for Ny = 16, and 24 have been fitted
using the Z(2) finite size scaling functions. The rescaled data are shown in Fig. 4 (bottom) and
include also results for Ny = 8 for comparison. As can be seen for the order parameter possible
contributions from regular terms that lead to deviations from the universal Z(2) scaling curve are
visible for Ny = 8, but are small. For the susceptibility, however, scaling violations are large
in the symmetry broken phase. This also has been observed in simulations of the Ising model
and, in addition to contributions from regular terms, may indicate substantial contributions from
corrections to scaling [12]. Similar results we find for smaller values of the light quark masses.

5.2 Chiral observables in the vicinity of the RW endpoint

As discussed in Section 3 and shown in Fig. 3, the chiral condensate also may serve as an
energy-like observable in the vicinity of the RW endpoint. The maximum in the temperature
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Figure 4: The order parameter M (top, left) and the order parameter susceptibility j;, (top, right) for n; /ms; =
1/27 and various lattice sizes. Lines correspond to fits using the Z(2) finite size scaling functions. The
corresponding rescaled data and scaling functions are shown in the figures on the bottom.

derivative of the chiral condensate, the mixed susceptibility, thus may equally well be used to
determine the temperature of the RW transition at fixed m; /m;. We show in Fig. 5 (left) results for
the renormalization group invariant (RGI) chiral condensate

nig

A= <<1l71l/)1 - ””<W>s> , .1)

where we used the kaon decay constant fx for normalization. Its temperature derivative is shown
Fig. 5 (right). The quark mass dependence of the peak location as well as the weak dependence
of the peak height on the quark mass is found to be in agreement with that of the order parameter
susceptibility .
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Figure 5: RGI chiral condensate (left) and its temperature derivative (right) versus temperature and for
several values of the light quark masses. Shown are results from simulations on lattices with spatial extent
N =24.
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6. Conclusions

We have presented results from an ongoing study of the phase diagram of (2+1)-flavor QCD
in the Roberge-Weiss plane on lattices with temporal extent N; = 4 using the HISQ action with
light quark masses decreasing from their physical value towards the chiral limit. Using a finite size
scaling analysis we found that the endpoint of the 1% order RW transition line remains 2" order
at least down to light quark masses corresponding to Goldstone pion masses of 55 MeV. We have
shown that the chiral condensate is sensitive to the RW transition and may serve as a energy-like
operator characterizing universal behavior close to the RW endpoint.
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