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1. Introduction

We discuss methods to calculate thermodynamic quantities near first order phase transitions.
First order phase transitions are expected in interesting systems including the high density region of
QCD and the many-flavor QCD aiming at construction of a walking technicolor model. The SU(3)
gauge theory, i.e., the quenched approximation of QCD, at finite temperature is known to have
a first order deconfining phase transition and is a good testing ground for developing techniques
to investigate thermodynamic quantities around the phase transition. We study thermodynamic
properties near the first order phase transition of the SU(3) gauge theory.

At a first order phase transition point, two phases coexist. To keep a balance between them,
their pressures must be the same in the two phases. Therefore, one can check the reliability of the
computational method by measuring the difference of the pressures in two phases. On the other
hand, the energy density is different in each phase. The difference is the latent heat, which is one of
the most important physical quantities characterizing the first order phase transition. In Ref. [1, 2],
we have studied the first order transition of the SU(3) gauge theory using the derivative method [3].
Showing that the pressure gap is absent when we adopt non-perturbative Karsch coefficients, we
have computed the latent heat, which would be a good reference in developing new methods.

In this study, we examine a new technique to calculate thermodynamic quantities using the
gradient flow, proposed by Ref. [4]. In the next section, we introduce the gradient flow method.
Then, our simulations at the first order transition of SU(3) gauge theory is explained in Sec. 3. We
show the results of the latent heat and pressure gap in Sec. 4 and compare the results with those by
the derivative method. The conclusions are given in Sec. 5

2. Gradient flow method

The gradient flow is an imaginary evolution of the system into a fictitious “time” t [5, 6].
We construct a flowed field Bµ solving a kind of diffusion equation and Bµ can be regarded as a
smeared field of the original gauge field Aµ over a physical range

√
8t. It was shown that operators

in terms of Bµ have no ultraviolet divergences nor short-distance singularities at finite t. Therefore,
the gradient flow defines a physical renormalization scheme, which can be calculated directly on
the lattice. Suzuki proposed a method to calculate the energy- momentum tensor (EMT) making
use of the finiteness of the gradient flow [4]. In [7, 8], the method has been shown to work for
the calculation of energy density and pressure in quenched QCD. Application of the method to full
QCD is formulated in Ref. [9] and has been successfully performed in Refs. [10, 11].

We calculate the latent heat and pressure gap by the gradient flow method at the first order
phase transition point in quenched QCD. Consider the following gauge-invariant local operators,

Uµν(t,x)≡ Gµρ(t,x)Gνρ(t,x)−
1
4

δµνGρσ (t,x)Gρσ (t,x), E(t,x)≡ 1
4

Gµν(t,x)Gµν(t,x), (2.1)

where Gµν(t,x) is the field strength of flowed gauge field Bµ at the flow time t and the square of
Gµν(t,x) is defined by the clover-shaped operator. With these dimension-4 operators, the correctly
renormalized energy-momentum tensor T R

µν is given by [4]

T R
µν(x) = lim

t→0

{
1

αU(t)
Uµν(t,x)+

δµν

4αE(t)
[E(t,x)−⟨E(t,x)⟩0]

}
, (2.2)
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where αU(t) = ḡ2
[
1+2b0s̄1ḡ2 +O(ḡ4)

]
and αE(t) = 1

2b0

[
1+2b0s̄2ḡ2 +O(ḡ4)

]
are determined by

the perturbation theory. Here, ḡ = ḡ(1/
√

8t) denotes the running gauge coupling in the MS scheme
at the momentum scale q = 1/

√
8t, and s̄1 =

7
22 +

1
2 γE − ln2 ≃−0.08635752993, s̄2 =

21
44 −

b1
2b2

0
=

27
484 ≃ 0.05578512397, b0 =

1
(4π)2

11
3 Nc, b1 =

1
(4π)4

34
3 N2

c , and Nc = 3. The energy density and the
pressure are obtained from the diagonal elements of EMT,

ε =−
⟨
T R

00(x)
⟩
, p =

1
3 ∑

i=1,2,3
⟨T R

ii (x)⟩. (2.3)

Separating configurations into the hot and cold phases, we calculate the latent heat ∆ε/T 4 ≡
ε(hot)/T 4 − ε(cold)/T 4 and the pressure gap ∆p/T 4 ≡ p(hot)/T 4 − p(cold)/T 4, where ε(hot/cold) and
p(hot/cold) indicate ε and p in the hot or cold phase, respectively.

In the gradient flow method of Ref. [4], we first take the continuum limit a → 0 at each flow
time t to remove errors from the lattice regularization, and then take the extrapolation to t = 0
to remove unwanted contamination of higher dimension operators. In Ref. [10], an alternative
procedure is proposed to first take t → 0 at finite a by identifying a range of t in which contribution
of terms singular around t ≈ 0 is negligible, and then take the a → 0 extrapolation. The latter
procedure is attractive when the a → 0 extrapolation is a major source of errors. If the removal of
singular contributions is successful, the final results should be insensitive to the order of a → 0 and
t → 0 extrapolations. We study the effect of the order of these extrapolations.

Another issue in the study of thermodynamic properties is the possible dependence on the
physical volume of the system. We have to keep the physical volume fixed in the a → 0 and
t → 0 extrapolations to identify finite volume effects. In our study, T is adjusted to the transition
temperature Tc whose physical value is a constant. In this case, the spatial volume V = (Nsa)3

is fixed in physical units when the aspect ratio Ns/Nt is fixed, because V = N3
s /(NtTc)

3 with a =

1/(NtTc) . We study the cases of Ns/Nt = 6 and 8 to study the finite volume effect.

3. Numerical Simulations

We perform simulations of the SU(3) gauge theory with the standard Wilson action at several
β ’s around the deconfining transition point. We have studied the lattices with temporal lattice
size of Nt = 8, 12 and 16 with several different spatial lattice size Ns for each Nt . Some of the
simulation data are obtained in Ref. [2]. Though we have tested Nt = 6 lattices too, we do not use
them in this study because the t → 0 extrapolation was found to be ambiguous for Nt = 6. Our
simulation parameters are summarized in Table 1. The configurations are generated by a pseudo
heat bath algorithm followed by 5 over-relaxation sweeps. Performing the gradient flow, smeared
observables are measured every 20 or 50 iterations. Data are taken at 3 to 7 β values for each
(Ns,Nt), and are combined using the multipoint reweighting method [12].

To evaluate ∆ε and ∆p, we need to separate the configurations at the first order phase transition
point into the hot and cold phases. We use the method adopted in Ref. [2]. As shown in Ref. [2],
there are two peaks corresponding to the hot and cold phases in the 2-dimensional histogram of
Polyakov loop and paquette at the transition point. The peaks are well separated in the Polyakov
loop direction, while they are overlapping in the plaquette direction. We thus classify configurations
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into the hot and cold phases with the value of the Polyakov loop. Because configurations in which
two phases coexist are found to be rare on our lattices, we disregard the effects of the mixed phase.

Table 1: Simulation parameters: “#β”, “βmin” and “βmax” are the number of simulation points, the smallest
and largest values of β , respectively. The number of Monte Carlo steps are given in the column “traj”, and
the interval of the measurements in the column “int”. The results of t → 0 extrapolation for ∆(ε + p)/T 4

and ∆(ε −3p)/T 4 on each lattice are shown in the last two column, while, in the last two lines, the results
of t → 0 extrapolation after the continuum extrapolation are shown.

Ns Nt #β βmin βmax traj int ∆(ε + p)/T 4 ∆(ε −3p)/T 4

48 8 6 6.056 6.067 1220000 20 1.048(38) 1.255(46)
64 8 5 6.0585 6.065 4535000 20 1.035(08) 1.159(10)
48 12 3 6.333 6.337 4750000 50 1.395(20) 1.440(22)
64 12 5 6.332 6.339 4750000 50 1.302(43) 1.323(46)
96 12 7 6.33 6.339 3747500 50 1.035(30) 1.080(33)
96 16 3 6.543 6.547 720000 50 1.198(20) 1.201(28)

128 16 3 6.543 6.547 341000 50 0.970(52) 0.936(46)
Ns/Nt = 8, continuum limit 1.103(47) 0.983(57)
Ns/Nt = 6, continuum limit 1.275(67) 1.202(59)
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Figure 1: ∆(ε −3p)/T 4 (left) and ∆(ε + p)/T 4 (right) measured on Ns/Nt = 8 lattices.

4. Results of the equation of state

In Fig. 1, we show the results of ∆(ε − 3p)/T 4 (left) and ∆(ε + p)/T 4 (right) as functions
of tT 2

c = t/(aNt)
2 on lattices with Ns/Nt = 8. The red, green and blue symbols are the results of

Nt = 8, 12 and 16, respectively. As t is increased, the lattice discretization error decreases because
the smearing length becomes larger than the lattice spacing. In fact, the plots in Fig. 1 show that
the difference among the results with different lattice spacing becomes smaller as the flow time
t increases, and the results of Nt = 8, 12 and 16 are consistent in the range of tT 2

c ≥ 0.006 for
∆(ε + p)/T 4.

We first adopt the original procedure of taking a → 0 first and then t → 0. Examples of the
a → 0 extrapolation are shown in Fig. 2. We fit the data with a linear function of a2 ∝ 1/N2

t . The
magenta symbols in Fig. 1 are the results in the continuum limit. We repeat the analyses also for
Ns/Nt = 6 using the data of Nt = 8 and 16 lattices.
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Figure 2: ∆(ε −3p)/T 4 (left) and ∆(ε + p)/T 4 (right) as functions of 1/N2
t = (Tca)2 for tT 2

c = 0.013 and
Ns/Nt = 8.
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Figure 3: ∆(ε + p)/T 4 and ∆(ε −3p)/T 4 in the continuum limit measured on lattices with Ns/Nt = 8 (left)
and Ns/Nt = 6 (right). The symbols on the vertical axis indicate the results of t → 0 extrapolations.

In Fig. 3, we show the results of ∆(ε + p)/T 4 and ∆(ε − 3p)/T 4 in the continuum limit as
functions of tT 2

c on the lattices with Ns/Nt = 8 (left) and Ns/Nt = 6 (right). Omitting the data at
small t where the lattice artifact is still large, we fit the data at 0.004 < tT 2

c < 0.013 by a liner
function to extract the t = 0 limit. We find that ∆(ε + p)/T 4 and ∆(ε − 3p)/T 4 at t = 0 are
consistent with each other within about one sigma, suggesting ∆p = 0 on these lattices.

We now study the alternative procedure of taking t → 0 first on each lattice and then take
a → 0. We carry out the t → 0 extrapolations by a linear fit in tT 2

c adopting the fit range 0.008 <

tT 2
c < 0.013 for Ns/Nt = 8 and 0.01 < tT 2

c < 0.016 for Ns/Nt ≤ 6. The results of ∆(ε + p)/T 4 and
∆(ε −3p)/T 4 at t = 0 are summarized in Table 1 for each lattice. The errors are statistical only. We
find that the differences between ∆(ε −3p)/T 4 and ∆(ε + p)/T 4 are less than about one sigma for
Nt = 12 and 16 lattices, indicating ∆p ≈ 0 on these finite lattices, while the differences for Nt = 8
are larger than the statistical error. Note that the systematic errors including those due to the choice
of the fit range for the t → 0 extrapolation, are not included yet.

In the left panel of Fig. 4, we plot ∆(ε − 3p)/T 4 and ∆(ε + p)/T 4 at t = 0 as functions of
1/N2

t = (Tca)2 for Ns/Nt = 8. The symbols on the vertical axis are the result at t = 0. The magenta
and green symbols on the vertical axis are the results of the original procedure of a → 0 followed
by t → 0. We see that the results obtained by the two procedures are consistent with each other
within the statistical errors.
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Figure 4: Left: ∆(ε + p)/T 4 (squre) and ∆(ε −3p)/T 4 (circle) at t = 0 measured on Ns/Nt = 8 lattices. The
horizontal axis is 1/N2

t = (Tca)2 The magenta and cyan symbols at 1/N2
t = 0 are the results of the original

procedure of first taking a → 0 and then t → 0. Right: ∆(ε −3p)/T 4 using clover-shaped operator (red) and
plaquette (blue) in the continuum limit for Ns/Nt = 8.
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Figure 5: ∆(ε − 3p)/T 4 (left) and ∆(ε + p)/T 4 (right) at t = 0 as functions of Nt/Ns = 1/( 3
√

V Tc). The
black and cyan triangles on the vertical axis are the result of the derivative method in the continuum limit [2]

Here, we comment on the choice of the operator for G2
µν . So far, we have discussed the

results of ∆ε and ∆p computed by the clover-shaped operator for G2
µν . However, G2

µν can also
be computed by the plaquette operator. In the right panel of Fig. 4, we compare the results of
∆(ε − 3p)/T 4 in the continuum limit obtained by the clover-shaped (red) and plaquette (blue)
operators for Ns/Nt = 8. The two results seem to agree with each other at sufficiently large t.

Finally, we study the finite volume effect and compare our results of the gradient flow method
with those obtained by the derivative method [2]. In Fig. 5, we plot the results of ∆(ε + p)/T 4

and ∆(ε − 3p)/T 4 in the t → 0 limit as functions Nt/Ns = 1/( 3
√

V Tc). The magenta symbols are
the results of in the continuum limit for Ns/Nt = 6 and 8 obtained by the original procedure of
t → 0 after a → 0. For comparison, we also show the results at t = 0 on lattices with Nt = 8, 12
and 16 by red, green and blue symbols, respectively. The black and cyan triangles on the vertical
axis are the results of the derivative method for ∆ε/T 4 and ∆(ε − 3p)/T 4, respectively [2]. We
find that the latent heat by the gradient flow method decreases and approaches the results of the
derivative method as the physical volume increases. Here, however, it should be kept in mind that,
as suggested by Figs. 8 and 9 of Ref. [2], we may have sizable systematic errors in the results of
the derivative method due to the infinite volume and continuum extrapolations.
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5. Conclusions

We calculated the latent heat and the pressure gap between the hot and cold phases at the first
order phase transition point of the SU(3) gauge theory using the gradient flow method, performing
simulations on lattices with various spatial volumes and lattice spacings. We confirmed that the
pressure gap at the transition point is consistent with zero on fine lattices with Nt ≥ 12. We then
studied the influence of the order of t → 0 and a → 0 extrapolations on the latent heat and the
pressure gap, and found that the results of the original procedure (a → 0 followed by t → 0) and the
alternative procedure (t → 0 followed by a → 0) are consistent with each other. We also studied the
finite volume effect on the latent heat. We found that the latent heat by the gradient flow method
decreases and approaches the result of the derivative method as we increase the physical volume of
the system towards the infinite volume limit (thermodynamic limit).

This work was in part supported by JSPS KAKENHI (Grant Nos. JP26287040, JP26400251,
JP15K05041, JP16H03982, and JP17K05442), the Uchida Energy Science Promotion Foundation,
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