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The chiral phase transition temperature T 0
c is a fundamental quantity of QCD. To determine this

quantity we have performed simulations of (2 + 1)-flavor QCD using the Highly Improved Stag-
gered Quarks (HISQ/tree) action on Nτ = 6,8 and 12 lattices with aspect ratios Nσ/Nτ ranging
from 4 to 8. In our simulations the strange quark mass is fixed to its physical value mphy

s , and
the values of two degenerate light quark masses ml are varied from mphy

s /20 to mphy
s /160 which

correspond to a Goldstone pion mass mπ ranging from 160 MeV to 55 MeV in the continuum
limit. By investigating the light quark mass dependence and the volume dependence of various
chiral observables, e.g. chiral susceptibilities and Binder cumulants, no evidence for a first order
phase transition in our current quark mass window is found. Two estimators T60 and Tδ are pro-
posed to extract the chiral phase transition temperature T 0

c in the chiral and continuum limit and
our current estimate for T 0

c is 132+3
−6 MeV.
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1. Introduction

One of the basic goals of lattice QCD calculations at non-zero temperature is to understand the
QCD phase diagram [1]. At zero baryon chemical potential, the QCD phase structure may depend
on the number of light quark flavors [2] which is summarized in the Columbia plot in two scenarios
as shown in Fig. 1. It is concluded that the physical point (mphy

u,d ,m
phy
s ) is located in the crossover

region [3, 4]. The first order phase transition regions and the crossover region are separated by
second order phase transition lines which belong to the Z(2) universality class. In the chiral limit
of N f = 2 theory, if UA(1) symmetry remains broken at the chiral transition temperature, the chiral
phase transition is a second order phase transition belonging to an O(4) universality class [2]. Thus
the chiral first order region in the left bottom corner of Columbia plot, the second order O(4) line
for N f = 2 case and the second order Z(2) line are supposed to meet at a tri-critical point mtri

s .
The location of the tri-critical point is still an open question. It is possible that the tri-critical point
shifts to infinite strange quark mass [5]. The nature of the chiral phase transition at zero baryon
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Figure 1: Schematic QCD phase structure with different values of quark masses (mu,d ,ms) at zero baryon
number density for mtri

s < mphy
s (left) and mtri

s > mphy
s (right).

chemical potential is also relevant for our understanding of the QCD phase diagram at non-zero
chemical potential. If mtri

s < mphy
s , it is expected that in the chiral limit there will be a second order

phase transition which belongs to the O(4) universality class as seen from the Fig. 1 (left). In
this case, in the chiral limit, there might exist a tri-critical point as if QCD system becomes a first
order phase transition in large baryon chemical potential. If mtri

s > mphy
s , towards the chiral limit

the system passes through the Z(2) critical line to a first order phase transition region as shown in
Fig. 1 (right). In this case the chiral phase transition may be first order for all values of the chemical
potential or, there may exist a critical point such that the transition becomes a crossover transition
at large baryon chemical potential.

In this proceedings, we focus on the determination of the chiral phase transition temperature
T 0

c in the chiral limit and continuum limit, and we will also discuss the nature of the chiral phase
transition. Previous studies have been reported in Ref. [6, 7, 8].

2. Observables and definitions

The universal behavior of the order parameter M and its susceptibility χM can be described by
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the so-called Magnetic Equation of State (MEOS) [9] as follows

M(t,h) = h1/δ fG(z) and χM(t,h) =
∂M
∂H

= h−1
0 h1/δ−1 fχ(z). (2.1)

Here z = th−1/βδ is a scaling variable, t = 1
t0

T−T 0
c

T 0
c

is the reduced temperature and h = H/h0 =
ml
ms
/h0 is the symmetry breaking field. β , δ are universal critical exponents which are uinque for a

given universality class as shown in Table 1.

Model β δ zp z60 fG(zp) fχ(zp)

Z(2) 0.3258 4.805 2.00(5) 0.10(1) 0.548(10) 0.3629(1)
O(2) 0.349 4.780 1.58(4) -0.005(9) 0.550(10) 0.3489(1)
O(4) 0.380 4.824 1.37(3) -0.013(7) 0.532(10) 0.3430(1)

Table 1: Universal critical exponents β , δ for Z(2), O(2) and O(4) 3-d universality classes. Also given is
the peak location of fχ , i.e. zp, and the location z60 where the height of the fχ is 60% of its peak height and
the values of fG(zp) and fχ(zp).

Three non-universal parameters h0, t0, T 0
c are unique for a particular system, e.g. T 0

c is the
critical temperature of chiral phase transition in the light quark chiral limit. For scaling variable zX ,
it is related to a temperature TX as follows

TX (H) = T 0
c + zX T 0

c H1/βδ/z0, z0 = h1/βδ
0 /t0. (2.2)

At the peak location of fχ , i.e. zX = zp, we have the relationship between pseudo-critical tem-
perature Tpc and the critical temperature T 0

c , e.g. Tpc = T 0
c + zpT 0

c H1/βδ/z0. Here we analyze two
other estimators for the chiral phase transition temperature, defined by two specific values of the
scaling variable z, i.e. z60 and zδ . The former is defined by fχ(z60) = 0.6 fχ(zp) with z60 < zp and
the corresponding T60 is defined as χM(T60) = 0.6χM(Tpc) with T60 < Tpc.

Since z60 is very close to zero the H-dependent term In Eq. 2.2 is suppressed by at least by
an order of magnitude compared to zp. This is shown in the left panel of Fig. 2 and Table 1, for
relevant universality classes. We thus can estimate T 0

c by investigating the values of T60 as follows

T60(H) = T 0
c + z60T 0

c H1/βδ/z0, (2.3)

In the right panel of Fig.2, we plot fχ/ fG vs. (T −T 0
c )/T 0

c for O(4) universality class where
we have set z0=1 for simplicity. The different curves, corresponding to different H, meet at a unique
crossing point (0,1/δ ) [10]. This thus drives us to estimate T 0

c by looking at HχM/M,

HχM(Tδ ,V,H)

M(Tδ ,V,H)
=

1
δ
⇒ T 0

c = lim
H→0

lim
V→∞

Tδ (V,H). (2.4)

As shown in Eq. 2.4, T 0
c can be estimated by looking at Tδ (V,H) in the infinite volume limit and

chiral limit.
By looking at following equation we will be able to investigate the nature of chiral phase

transition
M
χM

= (H −Hc)
fG(z)
fχ(z)

. (2.5)
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Figure 2: Left: Scaling function fχ for O(4), O(2) and Z(2) universality classes, zp is the peak position of
fχ . z60 ≈ 0 for these universality classes. Right: Ratio of scaling functions using O(4) exponents for three
different values of H [8].

In the case of mtri
s < mphy

s , Hc is zero and the chiral phase transition is a second order phase
transition in the chiral limit, the universality class is expected to be O(4). In the case of mphy

s < mtri
s ,

Hc is nonzero and the chiral phase transition is a first order phase transition in the chiral limit, where
the corresponding universality class of the second order phase transition occuring at some Hc > 0
is Z(2). Since fG(z)/ fχ(z) at z ≃ 0 and zp is a number fixed by universality class, one can study
the order of the chiral phase transition through the relation between M/χM and H at T60 and Tpc.

3. Lattice setup

In our simulations of (2 + 1)-flavor QCD we have used Highly Improved Staggered Quarks
and tree-level improved gauge action (HISQ/tree). The strange quark mass is chosen to its physical
quark mass value mphy

s , and the light quark masses values are varied from mphy
s /160 to mphy

s /20
which correspond to 55 MeV ≤ mπ ≤ 160 MeV. To perform the continuum limit, the temporal
extent Nτ is taken to be 6, 8 and 12 and the spatial volumes used are in the range 4 ≤ Nσ/Nτ ≤ 8.

As shown in the Table 2, for each data set we have performed at least 10000 time units (TUs)
at each temperature, where gauge configurations are separated by every 5 TUs. We used 50 random
noise vectors on each gauge field configuration and constructed unbiased estimators for the various
traces to compute the chiral condensate and its susceptibility.

N3
σ ×Nτ

ml

mphy
s

average # of TU

243 ×6 1/20 23000
243 ×6 1/27 13800
323 ×6 1/40 20000
403 ×6 1/60 15000
243 ×6 1/80 40000
323 ×6 1/80 26000
483 ×6 1/80 10000

N3
σ ×Nτ

ml

mphy
s

average # of TU

243 ×8 1/40 100000
323 ×8 1/40 32000
403 ×8 1/40 14000
323 ×8 1/80 80000
403 ×8 1/80 35000
563 ×8 1/80 20000
563 ×8 1/160 14000

N3
σ ×Nτ

ml

mphy
s

average # of TU

423 ×12 1/40 50000
603 ×12 1/40 32000
483 ×12 1/80 37000
603 ×12 1/80 18000
723 ×12 1/80 15000

Table 2: Current statistics for Nτ = 6, 8 and 12 lattices.

4. Results

We study the subtracted chiral order parameter M and its susceptibility χM. To avoid the
distorsion of the temperature dependence at low temperatures of the chiral order parameter we use

3
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the following definitions

M = ms

(
⟨ψ̄ψ⟩l −

2ml

ms
⟨ψ̄ψ⟩s

)
/ f 4

K , fK = (156.1/
√

2) MeV, (4.1)

χM ≡ ∂M
∂H

≡ m2
s χl,subtot/ f 4

K , χl,subtot =
∂

∂ml

(
⟨ψ̄ψ⟩l −

2ml

ms
⟨ψ̄ψ⟩s

)
. (4.2)

We replace the factors of T 4 by the appropriate factors of the kaon decay constant, f 4
K .
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Figure 3: Left: Binder cumulant of chiral condensate on Nτ = 8 lattices for ms/ml = 80 and 160. Right:
Volume dependence of chiral susceptibilities on Nτ = 12 lattices for ms/ml = 80.

In the left panel of Fig. 3 we show the Binder cumulant of chiral condensate on Nτ = 8 lattices
for mπ = 80 and 55 MeV. Here the Binder cumulant is defined as BX =

⟨
(X −⟨X⟩)4

⟩
/
⟨
(X −⟨X⟩)2

⟩2.
The plot shows that there is no evidence of first order phase transition in our current pion mass win-
dow 55 MeV ≤ mπ ≤ 160 MeV. Also as seen from the right panel of Fig. 3, chiral susceptibilities
obtained on Nτ = 12 lattices do not grow linearly with the volume which implies that there is no
first order phase transition in our current pion mass window. We also observe that Tpc is larger for
larger volume.
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Figure 4: Volume dependence of χMH/M on Nτ =12 lattices.

We then show the volume dependence of χMH/M in Fig. 4. At a fixed temperature HχM/M
becomes smaller in larger volume, and for a fixed volume it increases with increasing temperature.
HχM/M at Tpc is almost volume independent as shown in the middle plot of Fig. 4. Similar results
are also obtained from Nτ = 12 lattices with ml = ms/40 and Nτ = 8 lattices with ml = ms/80. As
shown in the left plot of Fig. 4, Tδ (V,H) increases with the increasing volume. Thus, we performed
1/V extrapolation as represented by the grey band. This gives Tδ (V →∞,ml =ms/80)≈ 138 MeV.
Similar analyses are done for ms/40 which gives Tδ (V → ∞,ml = ms/40) ≈ 141 MeV as shown
as the vertical line in the right plot of Fig. 4. This figure also shows that results for different quark
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masses do not cross at a unique point (Tc,1/δ ) as one would expect in the scaling regime (see
Fig. 2(right)). This reflects the importance of regular contributions. We then take the chiral limit
by performing linear extrapolation in H, which gives an estimate T 0

c (Nτ = 12)≃ 134(2) MeV.
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Figure 5: Left: T60 for Nτ = 12 lattices. Right: T 0
c estimated by the crossing point of M/H − χM rescaled

by H1/δ−1

In the left plot of Fig. 5 we show the extraction of T60 on Nτ = 12 lattices. We performed
the 1/V extrapolation as shown as the grey bands, and then performed linear chiral extrapolation
which gives a consistent result T 0

c ≈ 134(2) MeV. A sanity check for the T 0
c is to look at the crossing

point of M/H−χM rescaled by H1/δ−1. The advantage of M/H−χM is that it removed the regular
contributions linear in H. As shown in the right plot of Fig. 5, (M/H −χM)/H1/δ−1 in the infinite
volume limit with H = 1/40 (the green band) and H = 1/80 (the red band) meet at a "crossing
point" which is roughly around 135 MeV. Similar procedures e.g. (Tδ , T60, M/H − χM) are done
for Nτ = 8 and 6 which gives T 0

c = 142(2) and 147(2) MeV, respectively. Rather than doing 1/V
and linear in H extrapolations we also analyze the finite size scaling using O(4) scaling functions,
and the continuum extrapolated Tc values are systematically lower by 2-3 MeV which is one source
of our systematic uncertainty. The continuum extrapolations discarding results obtained on Nτ = 6
lattices gives about 3 MeV lower T 0

c , this is another source of our systematic uncertainty.
To study the nature the chiral phase transition, we look at the ratio M/χM (c.f. Eq. 2.5).

We show the quark mass dependence of M/χM at Tpc and T60 in the left plot and right plot of
Fig. 6, respectively. As discussed before, HχM/M at Tpc is almost volume independent, and this
indicates that all the data points shown in the Fig. 6 can be regarded as being in the infinite volume
limit. The colored band in the plots represents the difference between O(2) and O(4) universality
classes. In Fig. 6 we also compare our lattice results on the quark mass dependence of M/χM

with the scenarios of Z(2) phase transition with non-zero Hc corresponding to ml/ms = 1/120 and
ml/ms = 1/240. As one can see from the figure our lattice results are way above these expectations.
Thus, if there is a first order phase transition in the chiral limit of (2 + 1)-flavor QCD, it should
happen for quark masses smaller than ms/160.

5. Summary

We have performed lattice simulations of (2 + 1)-flavor QCD using HISQ/tree action. To
study the chiral phase transition temperature T 0

c in the chiral & continuum limit, the light quark
mass window was chosen to be mphy

s /160 ≤ ml ≤ mphy
s /20, which correspond to the pion mass

window 55 MeV≤ mπ ≤160 MeV, Nτ was set to 6, 8, and 12, and the corresponding Nσ ranging
from 4Nτ to 8Nτ . The current estimates of T 0

c on Nτ = 6, 8 and 12 lattices are 147(2) MeV, 142(2)

5
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Figure 6: M/χM is plotted for different Nτ along with the scaling expectations from different universality
classes.

MeV and 135(3) MeV, respectively. Including all systematic uncertainties, our current estimate of
T 0

c in the continuum limit is T 0
c = 132+3

−6 MeV [11]. By looking at the ratio M/χM as a function of
light quark mass, the chiral phase transition is more like a second order phase transition instead of
a first order phase transition.
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