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1. Introduction: Sign Problem

Lattice QCD at finite baryon density suffers from the numerical sign problem: no direct sim-
ulations based on the fermion determinant (such as RHMC) are feasible, due to the fact that the
fermion determinant becomes complex for µB > 0. Hence, with the well established methods, a
possible critical endpoint is still out of reach. Methods based on a complexified parameter space
(Complex Langevin, Lefschetz Thimbles) are promising, but not (yet) applicable to full QCD.
Since the sign problem is representation-dependent, the partition sum can also be rewritten in new
degrees of freedom which are closer to the physical states. Then the sign problem can be milder or
even be absent. Here, we will make use of so-called dual representations,. These have been proven
useful in many models which have severe sign problems in the original formulation (e. g. [1]).
For lattice QCD, a dual representation is well known in the strong coupling limit in terms of a
monomer-dimer system [2, 3, 4]. In this limit β = 2Nc

g2 → 0, it is possible to reverse the order
of integration and integrate out all gauge fields Uµ(x) before the Grassman variables since link
integration factorizes due to the absence of the plaquette contributions of the gauge action. The
resulting color singlet degrees of freedom are mesons and baryons. This system has been studied
since decades both via Monte Carlo and mean field and has proven to be a great laboratory for finite
density QCD. The advantage of the dual formulation of strong coupling LQCD is twofold: (1) the
very mild sign problem (which is even absent in the continuous time limit) and (2) the applicability
of Worm algorithms that enable fast simulations. This allows to study the full phase diagram in the
µB - T plane.

2. The Dual Representation of Strong Coupling Lattice QCD

The strong coupling partition function is obtained from the fermionic action of staggered
fermions by an exact rewriting of the path integral by integrating out the gluons first. Followed
by Grassmann integration, it can be mapped on a discrete system of monomers nx ∈ {0, . . .Nc},
dimers kb ∈ {0, . . .Nc}, and world lines `b ∈ {0,±1} [2, 3]:

ZF(mq,µ) = ∑
{k,n,`}

∏
b=(x,µ)

(Nc− kb)!
Nc!kb! ∏

x

Nc!
nx!

(2amq)
nx ∏

`

(
1

Nc!|`|
σ(`)e3Nt rlaτ µ

)
(2.1)

The Grassmann integration imposes the following constraint on the sum over configurations in the
above partition sum:

nx + ∑
µ̂=±0̂,...±d̂

(
kµ̂(x)+

Nc

2
|`µ̂(x)|

)
= Nc, (2.2)

which is a remnant of the gauge group and entails that mesonic degrees of freedom (monomers and
dimers) do not touch baryon world lines, The latter form oriented self-avoiding loops ` of length
|`|, and its sign σ(`) ∈ {−1,+1} depends on loop geometry.

The caveat of this formulation is that the lattice is very coarse, and it requires β > 0 to make
the lattice finer. In principle it is possible to include the effects of the gauge action by expanding it
in terms of plaquette occupation numbers before integrating out the gauge links. This gives rise to a
strong coupling expansion. Here, we do not include such corrections, but they have been addressed
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to next to leading order [5, 6] and have also been presented at this conference in the contribution [7]
“Towards a Dual Representation of Lattice QCD” by G. Gagliardi. Alternative strategies with dual
variables have been proposed in [8, 9]. The leading order gauge correction O(β ) to the SC-LQCD
phase diagram in the chiral limit has been first addressed via reweighting in β from the ensemble
at β = 0 [5]. Here it was found that although the nuclear liquid gas critical end point splits from
the chiral tri-critical point, the first order line from the nuclear transition and the chiral transition
did not split. An immediate question one can ask is: do the nuclear and chiral transition split at
sufficiently large β? New simulations obtained by sampling plaquette contributions directly via
world sheets did not indicate any splitting [6]. We may have to consider the possibility that in the
chiral limit, both transitions are on top even in the continuum limit. Hence it might be necessary
to address simulations at finite quark mass for the splitting to be sizeable. This motivates the study
presented here.

3. Thermodynamics of Strong Coupling Lattice QCD

In order to vary the temperature in the strong coupling limit, where the lattice spacing a(β )
cannot be modified at fixed β = 0, we need to introduce the bare anisotropy γ in the Dirac couplings.
This is in particular necessary since aT = 1/Nt is discrete (with Nt even): it turns out that the
chiral transition temperature is about aTc ' 1.5, hence we cannot address the phase transition on
isotropic lattices. The bare anisotropy will change the temporal lattice spacing at continuously at
fixed as ≡ a. :

LF(m̂,at µ,γ) = ∑
x

{
∑
ν

γ
δν0ην(x)

(
eat µδν0ψ̄xUν(x)ψx+ν̂ − e−at µδν0ψ̄x+ν̂U†

ν (x)ψx

)
+2m̂ψ̄xψx

}
ZF(m̂,at µ,γ) = ∑

{k,n,`}
∏

b=(x,ν)

(Nc− kb)!
Nc!kb!

γ
2kbδν0 ∏

x

Nc!
nx!

(2m̂)nx ∏
`

w(`,at µ) (3.1)

The anisotropy as
at
≡ ξ (γ) is a non-perturbative function of the bare anisotropy γ which allows to

define the temperature aT = ξ (γ)
Nt

. At weak coupling one expects ξ (γ) = γ , however, at strong
coupling, where the degrees of freedom are not quarks but hadrons, this is not the case. Mean
field theory at strong coupling implies ξ (γ) = γ2, since the square of the critical bare coupling
is proportional to Nt : γ2

c = Nt
(d−1)(Nc+1)(Nc+2)

6(Nc+3) [10]. However, modifications are expected beyond
mean field, hence we need to determine the precise correspondence between ξ ≡ as/at and γ .

Consider the SU(3) partition function Eq. (3.1), in terms of the extensive quantities: NM =∑
x

nx

the total monomer number, Nq = 2NDt +3NBt (with NDt = ∑
x

kx,0 and NBt = ∑
x
|bx,0| the total number

of temporal dimer and temporal baryon segments), and Ω the total winding number of all baryon
world lines. The dimensionless thermodynamic observables in terms of these dual variables are:

baryon density: a3
s ρB = a3

s
T
V

∂ logZ
∂ µB

∣∣∣∣
V,T

=
〈Ω〉
N3

σ

= 〈ω〉 (3.2)

energy density: a3
s atε = µBρB−

a3at

V
∂ logZ
∂T−1

∣∣∣∣
V,µB

=
ξ

γ

dγ

dξ

〈
nq
〉
−〈nM〉 (3.3)

pressure: a3
s at p =− a3

s atT
∂ logZ

∂V

∣∣∣∣
T,µB

=
ξ

3γ

dγ

dξ

〈
nq
〉

(3.4)
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chiral condensate: a4
s 〈ψ̄ψ〉= a4

s
〈NM〉

N3
σ Nta4

s at
=

ξ

m̂
〈nM〉 (3.5)

interaction measure: ε−3p =−〈nM〉
a3

s at
=−mq 〈ψ̄ψ〉 (3.6)

Clearly, most of these observables explicitly depend on ξ (γ) and its derivative. They have
been measured in the full µB - T plane after having determined ξ (γ) non-perturbatively.

4. Anisotropy Calibration and Results

The determination of ξ (γ) in the chiral limit has already been addressed in [11, 12]. The
non-perturbative result deviates from the mean field assignment ξmf(γ) = γ2 considerably:

ξ (γ)≈ κγ
2 +

γ2

1+λγ4 with κ = 0.781(1) (4.1)

As an application, the dependence of observables on the anisotropy was studied: the pion decay
constant, the chiral condensate and the baryon mass. With this result, it is also possible to define
unambiguously the continuous time limit at→ 0 via Nt→∞ and γ→∞ at fixed aT , which is further
elaborated in [13] and in a contribution to this conference “Temporal Correlators in the Continuous
Time Limit of Lattice QCD” my M. Klegrewe [14]. The anisotropy calibration can also directly be
performed in the continuous time limit.

In this proceedings, we want to extend these results to finite quark, i. e. we address the
anisotropy calibration and its difficulties for mq > 0. In order to determine ξ (γ) the idea is to
consider the following current that is implied by the Grassmann constraint [15]:

jµ(x) = σ(x)
(

kµ(x)−
Nc

2
|bx,µ |−

Nc

2d

)
→ ∑

±µ̂

( jµ(x)− jµ(x− µ̂)) =−σ(x)n(x) (4.2)

In the chiral limit, where n(x) = 0, the current jµ(x) is locally conserved. The conserved charge
Qµ = ∑

x⊥µ

jµ(x) has
〈
Qµ

〉
= 0, but non-zero variance:

〈
Q2

µ

〉
6= 0. The calibration of ξ (γ) is then

obtained via a renormalization condition on demanding a physically isotropic box:

atNt = asNs ⇔
〈
Q2

t
〉
(γ0)

!
=
〈
Q2

s
〉
(γ0),

as

at
=

Nt

Ns
= ξ (γ0). (4.3)

To extend this method to finite quark mass, there is yet a difficulty: jµ(x) is no longer a
conserved current, i.e. on a given configuration, Qt(t1) 6= Qt(t2) (and Qz(z1) 6= Qt(z2)). This is
expected because the monomers are sources of a pion current −mqψ̄γ5ψ . However, due to the
even/odd decomposition for staggered fermions, there are as many monomers on even as on odd
sites. Hence, when averaging over parallel hypersurfaces,

Qt =
1
Nt

∑
t
(Qt(t)), Qz =

1
Ns

∑
z
(Qz(z)), (4.4)

the monomers of opposite parity σ(x) cancel each other, such that the total charge and its fluctu-
ations can still be used for anisotropy calibration. Again, we demand the fluctuations to be equal,
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Figure 1: Anisotropy calibration at bare mass m̂ = 0.1, ξ = 5 on a lattice 103 × 50. Left: Spatial and
temporal charge fluctuations. Center: Ratio, from which γ0 is obtained. Right: Monomer density around γ0.

〈
Q2

t
〉
(γ0)

!
=

〈
Q2

s
〉
(γ0). However, at finite dimensionless bare quark mass m̂, we need to keep the

physics constant e. g. MπL = const or [mq 〈ψ̄ψ〉]L = const. Hence we need to determine m̂(ξ ) as
well (see also [16]). We implement the second condition:

a4mq 〈ψ̄ψ〉= a3atξ m̂(ξ )〈ψ̄ψ〉= ξ 〈nx〉= const, (4.5)

which is related to the monomer density. Note that it is not possible to identify m̂ with either
amq nor atmq as m̂ depends on ξ (m̂ is the bare mass in Eq. (3.1)). In Fig. 1 an example of the
anisotropy calibration is shown. Fig. 2 shows the final result obtained by scanning through various
bare quark masses m̂ ∈ [0,1] and lattices 103×Nt with aspect ratio Nt

Ns
= ξ ∈ {1,2,3,4,5,6,8,10}.

With the calibration results, the continuous time limit Nt→∞ is well defined also for finite mq with
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Figure 2: Anisotropy calibration at finite quark mass: Left: Lines of constant physics: fixed mqψ̄ψ , which
defines m̂(ξ ) with m̂1 = m̂(ξ = 1) = amq. Right: bare anisotropy γ as a function of ξ and m̂.

mq/T fixed. The extrapolation towards continuous time is shown in Fig. 3. The non-perturbative
correction factor turns out to have a simple quark mass dependence, such that the temperature and
chemical potential are uniquely specified and have a well defined continuous time limit also at
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finite quark mass m̂1 = amq:

κ(m̂1) =
κ0

1+ c1m̂1 + c2m̂2
1

aT = κ(m̂1)[aT ]mf aµB = κ(m̂1)[aµB]mf (4.6)
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2
)

Figure 3: Example on how to obtain the continuous time limit at finite quark mass. Left: Correction factor
ξ (γ)/γ2 at fixed m̂1. Right: Dependence of the correction factor κ in the continuous time limit on mq.

By fixing the temperature aT on a lattice specified by Nt , and the isotropic bare quark mass
m̂1 = amq, one can determine via ξ = aT Nt the corresponding m̂(ξ ) and γ0(ξ , m̂(ξ )) for the Monte
Carlo simulations. With this it is possible to measure various thermodynamic observables at fixed
mass in the µB-T plane. Results on the phase boundary at mq > 0 have already been addressed in
[17], but here the mass-independent mean field definitions aT and aµB were used. The new results
for the thermodynamic observables Eqs. (3.2)-(3.5), are shown in Fig. (4) for amq = 0.1.

5. Conclusions

We have shown how to extend the anisotropy calibration to finite quark mass to obtain the
bare anisotropy γ0(ξ , m̂(ξ )) given ξ = as

at
corresponds to a physically isotropic lattice: asNs = atNt .

Here, the difficulty was addressed that γ0 now also depends on m̂, which requires an additional
condition that keeps the physics constant and yields m̂ = m̂(ξ ). This allows us to define the tem-
perature/chemical potenital and measure thermodynamic observables such as energy and pressure
unambiguously. Simulations in the continuous time limit ξ → ∞ confirm the extrapolated results
(see also the contribution to this conference [14]). In the future, we want to address the anisotropy
calibration also for β > 0: Here, the non-perturbative determination of as/at ≡ ξ (γ, m̂,β ) now also
involves β , and it might be necessary to introduce an additional bare anisotropy βs/βt as well.
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Figure 4: Various thermodynamic observables in the µB - T plane at quark mass amq = 0.1. The imprint of
the chiral critical endpoint at around (aT,aµB)' (0.6,2.0) can clearly be seen in all observables.
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