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1. Introduction
Violation of the symmetry under simultaneous charge-conjugation and parity-flip (CP)

is a core ingredient in the standard model (SM) and is necessary to explain the vast excess of
matter over antimatter in the universe [1]. The SM CP-violation (CPV) is small and arises
from the weak mixing between the quark [2, 3], and possibly also lepton [4, 5], families. Cos-
mological models require much stronger CPV [6], and most theories beyond the SM (BSM)
do indeed produce it naturally. If this additional CPV is produced naturally by physics
at a few TeV, the next generation of electric dipole moment (EDM) measurements [7, 8]
are likely to find it, and the neutron is a very good candidate system. To connect theory
to experiments, it is imperative to obtain the matrix elements (ME) of the CPV effective
operators that control the EDMs of various particles. Here, we discuss our progress in
calculating the neutron EDM (nEDM) due to the quark chromo-EDM operators.

1.1 BSM Operators

The SM CPV in the weak sector leads to effective dimension-6 four-fermion operators
at hadronic scales. In principle, these also lead to dimension-3 CPV mass terms, ψ̄γ5τψ, for
the fermions, where ψ is the fermion field and τ is a flavor matrix.1 Axial transformations
can be used to remove the quark CPV masses, except when τ is the identity, in which
case the anomaly transforms it to the dimension-4 gluon-topological-charge operator (also
called the Θ-term), GµνG̃µν , where G is the gluon field strength [10]. Phenomenological
estimates, using the limit on the neutron electric dipole moment, already constrain the
total coefficient Θ̄ of this operator to be anomalously small, less than 3×10−10 [11].

In BSM theories, CPV operators start at dimension 6 at the weak scale [12], but
two of them—the quark EDM (qEDM), ψ̄τΣµνF̃

µνψ, where F is the electromagnetic
field tensor, and the quark chromo-EDM (qCEDM), ψ̄τΣµνG̃

µνψ—become dimension 5
after electroweak symmetry breaking. This means that their natural suppression rela-
tive to the QCD scale is by vEW/M

2
BSM rather than by 1/M2

BSM as for the remaining
dimension-6 operators—the gluon chromo-EDM (also called the Weinberg 3-gluon opera-
tor), GµνGλνG̃µλ, and various 4-fermion operators. In many BSM models, however, the
dimension-5 operators come with extra Yukawa suppression, and their effect is comparable
to the other dimension-6 operators. Thus, all these should be considered at the same level,
and their ME within the neutron state calculated.

1.2 Form Factors

Using Lorentz symmetry, the response of a neutron to the vector current can be written
in terms of the Dirac F1, Pauli F2, anapole FA, and electric-dipole F3 form-factors as

〈N |Vµ(q)|N〉 = uN

[
γµ F1(q2) + i

[γµ,γν ]
2 qν

F2(q2)
2mN

+ (2imNγ5qµ−γµγ5q
2) FA(q2)

m2
N

+ [γµ,γν ]
2 qνγ5

F3(q2)
2mN

]
uN ,

1We ignore possible CP-violating Majorana phases in the neutrino sector [9]
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Figure 1: (a) The ex-
traction of αN with the
insertion of the chromo-
EDM (labeled cEDM) or
CPV mass (labeled γ5)
operators on u quarks.
(b) Same as (a), but
with the insertion on
the d quark. (c) αN
due to chromo-EDM
insertion as a function of
the 3-momentum of the
neutron; the insertions
on the u and d quarks
are shown separately.
(d) Same as (c), but for
the CPV mass term.

in the Euclidean metric. Here Vµ represents the electromagnetic vector current, uN repre-
sents the neutron spinor normalized such that uN ūN =−i/p+mN , where p is its momentum
and mN its mass, q the momentum inserted by the vector current Vµ, and |N〉 is the neu-
tron state. The Sachs form factors [13–15] that describe the charge and current densities
in the Breit frame, are related to these as GE ≡ F1− (q2/4M2)F2 and GM ≡ F1 +F2.2

The electric charge is GE(0) = F1(0) = 0 and the anomalous magnetic dipole moment is
GM (0)/2MN = F2(0)/2MN . The anapole moment breaks the symmetry under simultane-
ous parity-flip and time-reversal (PT), and so, will be zero in our calculations. The electric
dipole moment is given by the CP-violation form factor F3 at zero q2, dE = F3(0)/2mN .

If parity is violated, an operator that creates an asymptotic neutron with the standard
parity transformation properties is NαN ≡ εabc

[
(d̄a)Cγ5Pu

b
]
exp{iαNγ5}dc, where a, b,

and c are color labels, the superscript C represents charge conjugation, P ≡ (1 +γ4)/2 is
positive-energy projector for zero-momentum quarks that improves the signal,3 and αN is
a constant depending on the asymptotic state that needs to be determined.4 Under the
standard choice of quark and neutron parities, αN is real when PT is a good symmetry,
imaginary when CP is good, and zero if parity is unbroken.
2. Status of Lattice Calculations and Preliminary Results

We have recently completed an analysis of the proton and neutron EDMs arising from
the quark EDM [16]. Here we report on progress on nucleon EDMs arising from the quark
2In this frame, the form factor F3 contributes a spin-dependent charge-density, and FA, a current density.
3At nonzero momentum, this introduces a mixing with the spin-3/2 state, which being heavier than the
neutron, is controlled like other excited states.

4αN is also specific to the precise operator used: different operators with the same quark content and
Lorentz properties can, in principle, need different αN .
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Figure 2: F3/(ε ·gV ) for the neu-
tron due to chromo-EDM insertion
on the d ((a) and (b)) and u ((c)
and (d)) quarks before ((a) and
(c)) and after ((b) and (d)) vari-
ance reduction. Here ε is the co-
efficient of the CP-violating term,
and the baryonic vector charge gV
is unity in the continuum limit and
cancels the lattice renormalization
of the vector current.

chromo-EDM operator. This operator has power divergent mixing with lower dimensional
pseudoscalar quark mass term and the gluon topological charge (if chiral symmetry is
violated) that has to be controlled. We, therefore, discuss these operators as well.

The quark chromo-EDM operator is a quark bilinear, so its ME can be calculated
using the Schwinger source method as described in previous proceedings [17, 18]. All
the calculations presented here were done with Clover fermions on a MILC generated
L3 × T = 243 × 64 HISQ ensemble [19, 20] with lattice spacing a = 0.1207(11) fm and
pion mass M sea

π = 305.3(4) MeV. The parameters of the Wilson-clover action used are
κ ≈ 0.1272103 corresponding to Mval

π = 310.2(2.8) MeV and cSW = 1.05094 determined
using tree-level boosted perturbation theory with uHY PP = 0.9358574(29). Statistical pre-
cision is increased using the truncated solver method [21, 22] with 128 low-precision and
4 high-precision measurements on each of the 1012 configuration. The quark-disconnected
diagrams were ignored in all of the reported calculations.

To determine αN , we use =Trγ5〈N0N̄0〉/<Tr〈N0N̄0〉, where 〈N0N̄0〉 is the propagator
with αN = 0. Asymptotically, this gives −2tanαN . Figures 1(a) and (b) show αN ex-
tracted from the neutron propagator for the CP violation parameter ε in the small (linear)
regime [17]. Figures 1(c) and (d) show that there is a strong dependence of the extracted
αN on the momentum of the neutron, probably due to lattice spacing artifacts.

The three point function, from which the ME of Vµ are extracted, calculated is

〈Ω|N0(~0,0)Vµ(~q, t)N0(~p,T )|Ω〉 =
∑
n,n′

e−iαnγ5une
−mnt 〈n|Vµ(q)|n′〉 e−En′ (T−t)un′e

−iα∗
n′γ5

with projection onto only one spinor component using P ≡ 1
2(1 +γ4)(1 + iγ5γ3). The ME

is isolated using the combination

Rµ ≡
Cµ3pt(q;τ, t)
C2pt(τ ;0)

√
C2pt(t;0)C2pt(τ ;0)C2pt(τ − t;−q)
C2pt(t;−q)C2pt(τ ;−q)C2pt(τ − t;0)
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Figure 3: (ε ·gV )/F3 versus Q2 for the neutron with chromo-EDM insertion on the d (left) and u
(right) quarks at various source-sink separations.

where Cµ3pt are the projected 3pt functions and C2pt are the real parts of projected 2pt
functions. The eight quantities—<Rµ and =Rµ—provide an overdetermined set from which
the three form factors can be extracted.5 In fact, these break up into two sets of four
quantities: the components VR ≡ (<~R,i=R4) give G2 ≡GE +tanαN (Q2/4m2

N )F3, whereas
the other four components VI ≡ (=~R,−i<R4) give G1 ≡ GM and G3 ≡ F3 + tanαNF2.6

The overdetermined set of equations for the transition ME between a neutron at rest and
momentum (−~q,EN ) is

E ≡
(
X1 0 X3
0 Y1 0

)G1
G2
G3

−(VR
VI

)
= 0 ,

where X1 ≡m(−cq2, cq1,s(EN −mN ),−isq3)T , Y1 ≡mNc(q1, q2, q3,−i(EN +mN ))T , X2 ≡
−(q3/2mN )Y1, c≡ cos2αN and s≡ sinαN cosαN . We solve this set by the method of least
squares, i.e., we solve the linear equations obtained by differentiating ETWE with respect
to Gi for a positive weight matrixW , which we choose, for simplicity, to be diag(σ2

R,σ
2
I )−1,

where σR and σI are the errors on VR and VI respectively.
Figure 2 (a) and (c) show that the signal in the F u3 and F d3 is, a priori, poor. To

improve the signal, we propose the following variance reduction method: use quantities
zi that are correlated with F3 and have zero expectation value, and construct the lower
variance estimator F3−σ2

FiΣ
−2
ij zj , where Σ−2 is the inverse variance-covariance matrix of

zi and σ2
Fi is the covariance of F3 with zi. Since we know that for ε = 0 (CP-symmetric

case), F3 is zero even at finite a and for our mixed action calculation, and remains highly
correlated with F3 for small ε, we expect using F3(ε = 0) as a zi in the above expression
will reduce the variance. Figures 2 (b) and (d) show that this variance reduction method
improves the signal substantially.
5Note, we also consider R with momentum components permuted and reflected according to the symmetries
of the theory, but do not display them explicitly in the narrative.

6One can also account for possible current nonconservation by including two additional form factors, a
combination of which appears in each of the sets. The effects of including these neglected terms were
found to be small. We also ignore purely lattice form factors (i.e., coefficients of hypercubic covariant, but
not Lorentz covariant, tensors) including those arising from violation of the relativistic dispersion relation.
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Figure 4: The evolution of the susceptibilities of the topological charge (left) and the Weinberg
operator (right) as a function of the HYP smearing steps.
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Figure 3 shows that 1/F3 behaves linearly with Q2 as would be expected from pole-
dominance. Also, the dependence on the source-sink separation τ is small, indicating
excited state contributions are manageable. The next important step, once the signal is
established, is to subtract power divergences in the renormalization due to operator mixing
to ensure a finite result in the continuum limit.

3. Ongoing Work
We are extending the calculation of the chromo-EDM by constructing various com-

binations of the matrix elements that each provide an estimate of F3, and by adding the
contribution of the disconnected diagrams. To address divergent mixing under renormaliza-
tion, the RI-sMOM scheme defined in [10] is complicated, so we are evaluating gradient-flow
regularization [23]. We will first implement this scheme for the simpler case of the two glu-
onic operators. In Figure 4, we show the evolution of the susceptility of the scale-dependent
Weinberg operator with the number of HYP smearings and compare it to the scale-
independent topological susceptibility. We are investigating whether the expected scale-
dependence persists under gradient-flow smearing. The motivation is that under gradient
flow renormalization, the Weinberg operator needs no divergent subtraction. The next step
will be to extend this to the fermion sector. To demonstrate efficacy, we will first compare
results for isovector charges renormalized using the RI-sMOM scheme and gradient flow.

Finally, we are developing machine learning algorithms to reduce the computational
effort. Building on the similarity to reweighting ensembles or unraveling quantum trajec-
tories, the method proceeds by finding a combination of easily calculated and statistically
precise quantities that have a high correlation with more compute-intensive quantities of
interest, and then making the estimates rigorous by implementing standard bias reduction
techniques. Initial tests of these ideas show promise as illustrated in Figure 5.
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