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1. Introduction and overview
Tantalus, a king of ancient Phrygia in Greek mythology, made the mistake of gravely offending the gods. As a
punishment, once dead the king was forced to stand in a pool of water, with fruit hanging just over his head. The water
would recede every time the king tried to take a sip, and the fruit would lift away every time he reached to take a bite.

New results are reported from the dilaton effective field theory analysis of a very light scalar
with 0++ quantum numbers in lattice simulations of a strongly coupled gauge theory, defined in the
two-index symmetric fermion representation of the SU(3) color gauge group (one flavor doublet of
massless fermions with sextet color). The sextet model thus defined plays a prominent role in the
near-conformal gauge theory paradigm, perhaps with BSM implications.

In earlier work we discovered the light 0++ scalar as one of the most significant theoretical and
practical consequences of near-conformal infrared behavior in the sextet theory [2–6], radically dif-
ferent from the heavy σ -particle of gauge theories far from the conformal window and modeled like
QCD. We investigate the hypothesis of a dilaton inspired EFT in the sextet model with important
caveats in our conclusions. Accordingly, conformal symmetry breaking would be entangled with
chiral symmetry breaking (χSB) driving near-conformal infrared behavior and predicting charac-
teristic dilaton signatures of the light scalar from broken scale invariance when probed on relevant
scales of fermion mass deformations. We find an unexpectedly light dilaton mass in the chiral limit
at md/ fπ = 1.56(28), set in units of the pion decay constant fπ from a recently reasoned choice of
the dilaton potential in the Lagrangian of the EFT [1]. Subject to further statistical and systematic
tests of continued post-conference analysis, this result is significantly lower than our earlier esti-
mates for the σ -particle from less controlled extrapolations to the massless fermion limit of chiral
perturbation theory without characteristic dilaton features.

Two models are identified in Section 2 with significantly smaller step β -functions than QCD
and perhaps with slowly walking scale dependence correlated with dilaton signatures of emergent
light scalars. Before pivoting to the dilaton analysis in Section 4 we present first in Section 3 the
unresolved challenges of the standard χPT analysis and its extensions to the linear σ -model. We
also discuss important differences of the sextet dilaton analysis from chiral perturbation theory
(χPT ) and from general extensions of the linear σ -model without dilaton signatures. In Section 4
the dilaton EFT is discussed and important predictions are reviewed for hypothesis testing. Results
are reported from the current status of the sextet dilaton analysis. Based on the recently published
data of the LSD collaboration [7] some of our own comparative n f = 8 dilaton analysis is also
reported. New ideas and simulations are briefly presented in Section 5 for reaching much reduced
fermion mass scales in the ε-regime of the dilaton EFT. We conclude in Section 6 with some
cautionary remarks and caveats for the outlook.

2. Near-conformal β -functions and the light 0++ scalar
The step β -function of the renormalized gauge coupling is shown from lattice studies in Fig. 1

for two different fermion representations of strongly coupled gauge theories with SU(3) gauge
group [6]. Five β -functions are shown and three of them may exhibit dilaton-like features of their
light scalar. In the fundamental representation, the n f = 4 model in Fig. 1 is like QCD with four
massless fermions. It has the largest β -function [8] and a σ -particle with a heavier mass, mσ/F ∼ 6,
set by the scale of the Goldstone decay constant F in the massless fermion limit of χSB [7]. (For
convenience, we will change the notation to F ≡ fπ in all other sections.) At increased flavor
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Figure 1: The five β -functions of the models surveyed in this section are shown on the left panel. The correlation
with the emergent light scalars in the n f = 8 model and the sextet model are discussed in the text. The right panel is the
cartoon version of a walking β -function, replaced by small and flat β -functions in realistic near-conformal models.

number n f = 8 the β -function becomes reduced and noticeably more flat compared to QCD [9]
and exhibiting a scalar mass with significantly reduced value [7, 10, 11]. For the observed range of
fermion mass deformations at n f = 8, the scalar mass and the pion mass are tracking each other.
This is quite distinct from QCD, with motivation for the n f = 8 dilaton analysis in [12, 13]. At
n f = 10 the further increase of the flavor number leads to further reduction of the β -function [14,15]
with some unresolved controversy. An infrared fixed point was reported in [16] with vanishing β -
function at g2 ∼ 7 and reconsidered in follow-up work with improved systematics which left the
conformal or near-conformal behavior of the β -function unresolved at strong gauge couplings [17].
The model with the largest flavor number in the fundamental representation at n f = 12 is shown
in Fig. 1 with the smallest β -function exhibiting very flat dependence at strong coupling [6, 14].
We will return in the future to the interesting challenge this model presents very close to the CW,
perhaps near-conformal and walking but with controversies from recent lattice work [18, 19] and
from a new conference contribution [20] suggesting conformal behavior.

The sextet β -function in Fig. 1 is from [21] with the mσ/F ratio taken from [4]. The point
marked as new was our Lattice 2017 conference contribution [22], bridging the volume dependent
step β -function and the scale dependent β -function of the p-regime in the infinite volume limit.
We have now a set of new gauge ensembles in the sextet model to extend the small and flat step
β -function of Fig. 1 toward stronger gauge couplings. The mark (?) next to the sextet model ratio
mσ/F < 3 is our indicator that the final ratio in the chiral limit requires further analysis, with this
report contributing new results.

The above brief survey presents motivations for near-conformal tests of the n f = 8 model and
the n f = 2 sextet model for dilaton signatures. The right panel of Fig. 1 is the cartoon version of a
walking β -function, presumably replaced by small and flat β -functions in realistic near-conformal
models. Although the unrealistic cartoon shape of the β -function might be sufficient for dilaton
analysis when the conformal limit is approached in some parametric expansion, we remain uncon-
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vinced that it is a required feature of walking. Recent 5-loop results are only plotted in Fig. 1 to
indicate the state of the art in the perturbative loop expansion [23], perhaps for future theoretical
analysis of walking, based on speculations for a pair of complex conformal fixed points of walking
non-perturbative β -functions below the CW. It did not escape our attention that investigations of
this scenario should also include the n f = 12 model.

3. Challenges of the sextet χPT analysis and its linear σ -model extensions

3.1 Early discovery of the light scalar and the associated particle spectrum

The light 0++ scalar in the two-index symmetric (sextet) fermion representation of the SU(3)
color gauge group was reported first at Lattice 2013 in [2,3] as shown in the left panel of Fig. 2. We
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Figure 2: (left) The first result on the light sextet scalar from [2, 3]; (right) The status of hadron spectroscopy in the
sextet model is shown as reported in [4] including Mπ ,Fπ and the scalar mass Md (Md ≡ MH( f0) in earlier notation).
The Mπ ,Fπ ,Md data set of the analysis has been updated and refined since using new lattice ensembles in large volumes.
Input data Md , as used in some parts of the dilaton analysis, comes from the report in [4] as graphically represented on
the right panel of the figure.

have our Mπ ,Fπ ,Md sextet data set (Md ≡MH( f0) in earlier notation) from a very large number of
gauge ensembles at three lattice spacings in a range of fermion masses, m = 0.0010−0.0080, with
lattices sizes from 323×64 to 643×96. The finite size analysis of the data set was presented in [6].
We use infinite volume extrapolations of Mπ ,Fπ data sets at fixed bare gauge coupling β = 6/g2,
with β = 3.20 at each of the lowest five input fermion masses applied to the analysis. The Md input
is always taken from the largest volume of the gauge ensembles at each input fermion mass.

3.2 Pivot to dilaton EFT from χPT and its linear sigma model extensions

Motivated by the SU(2) doublet of mass deformed Goldstone pions of the sextet model, we
tested mass deformed chiral perturbation theory (χPT ) when applied to the above described sextet
data for Mπ and Fπ . As shown in Fig. 3, the logarithmic form of NLO one-loop χPT can be
separately fitted to Mπ with the three parameters Bπ , fπ ,Λ3 and good χ2 for the one-loop chiral
Lagrangian. Similarly, Fπ fits well with a separate set of three parameters Bπ , fπ ,Λ4 and good χ2.
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However, NLO χPT fails for simultaneous fits of the Mπ ,Fπ input set because the two pairs B, fπ

of low-energy parameters of the χPT Lagrangian are inconsistent in separate fits of Mπ and Fπ .

χPT fit to M2
π :
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Figure 3: Chiral and conformal fits of the Mπ ,Fπ parameters in the sextet model. The lowest m is not fitted in Fπ from
incomplete finite size scaling analysis.

Forcing conformal behavior on the sextet model is not the answer. The results in Fig. 3 from
forced conformal fits to Mπ and Fπ show unacceptable results in the mass range of our analysis
with significant variation of the Mπ/Fπ ratio and inconsistent conformal γ exponents, statistically
rejected on any reasonable level of confidence. We remain puzzled and unconvinced by recent
claims of observing conformal behavior in the model [24].

As a possible remedy to the failures of χPT , we had been experimenting in the past with rooted
staggered χPT to include cutoff effects with taste breaking from the staggered pion spectrum. The
results at β = 3.20 were reported in [6] but applying the same analysis at β = 3.25 new problems
emerged. The plausible interpretation of the failing χPT analysis is the light scalar closely tracking
the mass-deformed pion spectrum as shown in Fig. 2. Pion dynamics remains closely coupled to
0++ scalar dynamics, violating the basic premise of χPT .

In the sextet model with SU(2)×SU(2) flavor group the linear σ -model would be a natu-
ral candidate to extended χPT to the coupling of the Goldstone triplet to the σ -particle in the
mσ/F < 3 mass range with broken SU(2)×SU(2)∼ O(4) symmetry. This would match the con-
struction of the standard model Higgs sector at a higher mσ mass in the presence of fermion mass
deformations, before extrapolation to the chiral limit is taken. However, the linear σ -model with
broken SU(2)×SU(2)∼ O(4) symmetry is not applicable in the current range of fermion mass de-
formations where existing data with mσ ∼ mπ do not comply with the condition m2

σ ≥ 3m2
π derived

from the tree-level Lagrangian of the linear σ -model [25]. Much lower fermion mass deformations
would be needed to probe the linear σ -model regime. Following earlier work of Soto [26], we were
experimenting with extensions of the linear σ -model to find relevant additional terms for the anal-
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ysis, similar to Eq.(4.1) with the choice Vσ from Eq.(4.2b) but with preset value of the y exponent
at y = 2 in the mass term of the Lagrangian, making the dilaton EFT practically indistinguishable
from the generalized linear σ -model. We performed one-loop calculations at y = 2 and made tree
level fits to our sextet lattice ensembles without satisfactory results ( in the meantime, complete
one-loop calculations appeared in [27]). While working on loop correction in the analysis and the
relaxation of the y = 2 constraint to accommodate the more general dilaton analysis of the sextet
model, the pioneering tree level n f = 8 dilaton analysis appeared [12] and the two groups were off
to the dilaton races [12, 14]. In this spirited competition we published the first sextet analysis [14].
A follow-up publication to [12] appeared [13] extending the n f = 8 analysis and including some
limited sextet analysis based on plots from our earlier sextet publications without access to our
exclusive and more recent data sets. In the next section we provide some technical details of our
significantly extended dilaton analysis beyond what was published in [14] for the sextet model.
For comments and comparative purposes, we also include our extended n f = 8 analysis based on
recently published data from [7].

4. Dilaton effective field theory of two candidates for near-conformal models

4.1 The EFT Lagrangian

In Section 2 we presented evidence for the correlated trend between the reduced mass of the
0++ singlet scalar and the reduced size of the β -function close to the lower edge of the CW sug-
gesting near-conformal behavior in the sextet model. In the currently accessible range of fermion
mass deformations, the mass of the light scalar is tracking closely the Goldstone boson (pion) mul-
tiplet from spontaneous chiral symmetry breaking (χSB) of the underlying SU(n f )×SU(n f ) flavor
group, with n f = 2 in the sextet model. This characteristic behavior is captured in a recently inves-
tigated low-energy EFT [1, 12, 13, 28] to describe the light σ -particle with 0++ quantum numbers,
coupled to pion dynamics as a dilaton from broken scale invariance. The first application to the
n f = 8 model was reported in [12, 13]. After our first analysis of the sextet model in [6] we report
here a broader scope of dilaton EFT tests in the sextet and n f = 8 models.

The minimal modification of the chiral Lagrangian with dilaton couplings leads to the EFT

L =
1
2

∂µ χ∂µ χ − V (χ)+
f 2
π

4
( χ

fd

)2 tr
[
∂µΣ ∂µΣ

†]+ m2
π f 2

π

4
( χ

fd

)y tr
[
Σ+Σ

†], (4.1)

where the notation χ = fd ·eσ/ fd is introduced for the connection between the dilaton field σ(x) and
the compensator field χ(x) which transforms as χ(x)→ χ ′(x′) = eω χ(x) under the shift σ(x)→
σ ′(x′) = σ(x)+ω · fd for scale transformations xµ → x′µ = e−ωxµ . The notation fd designates the
minimum of the dilaton potential V (χ) in the chiral limit of vanishing fermion masses. In Eq. (4.1)
of the EFT two different forms of the dilaton potential were chosen for our analysis,

V (χ)→Vd(χ) =
m2

d

16 f 2
d

χ
4(4 ln

χ

fd
−1

)
, (4.2a)

V (χ)→Vσ (χ) =
m2

d

8 f 2
d
(χ2− f 2

d )
2. (4.2b)

5



P
o
S
(
L
A
T
T
I
C
E
2
0
1
8
)
1
9
6

Tantalizing dilaton tests from a near-conformal EFT Julius Kuti and Chik Him Wong

Recent theoretical motivation of Eq.(4.2a) originates from [1], based on a parametric expansion of
V (χ) as the CW is approached. Eq.(4.2b) is a linear σ -model inspired dilaton in [12, 13, 29]. We
do not dwell on various aspects of the two choices in our first extended sextet tests. The primary
focus is on comparing the two choices Vσ ,Vd and commenting on what was reported in earlier work
[12, 13, 30] and at the conference [31]. We will show that the choice of Vd , favored by the theory
in [1], might become a game changer in the interpretation of the sextet model.

The Goldstone pions in Eq.(4.1) are described by the unitary matrix field Σ = exp[2iπ/ fπ ]

where the pion field is represented as π = ΣaπaT a with n2
f − 1 generators of the SU(n f ) flavor

group. We keep the same notation as in [12, 13] for the parameters in Eqs.(4.1,4.2a,4.2b) for the
convenience of easy comparison with our analysis. In this notation, the tree level pion mass would
be m2

π = 2Bπm close to the chiral limit, with the dilaton decoupled from pion dynamics. The pion
decay constant fπ is defined in the chiral limit. The tree-level dilaton mass in the chiral limit of
vanishing fermion mass is designated as md and it is defined by the second derivative of the tree-
level dilaton potential at its χ = fd minimum as V ′′(χ = fd) = m2

d . The dilaton mass at finite
fermion mass deformations is designated by Md .

The scale-dependent anomalous dimension of the chiral condensate, as y = 3− γ in Eq.(4.1),
will require some more refined scale setting definition in walking theories and will not be addressed
here. In the sextet model we have detailed information on the scale-dependent γ which will be
compared with the results emerging from the analysis of Eqs.(4.1,4.2a,4.2b).

The Lagrangian of the dilaton EFT in Eq.(4.1) has a long history which includes [29, 32–42]
with further references.

4.2 MCMC analysis of dilaton EFT predictions from Vd and Vσ potentials: sextet model

In Markov Chain Monte Carlo (MCMC) based analysis of the implicit Maximum Likelihood
(IML) procedure, the targeted five physical parameters fπ ,Bπ ,y,md/ fπ , fd/ fπ are defined by tree-
level application of the dilaton EFT, based on Eq.(4.1). For the choice of the dilaton potential Vd(χ)

the physical parameters are subject to three non-linear constraints at each input fermion mass m
leading to twelve constraints with input at four different fermion masses in the IML procedure,

M2
π ·F

2−y
π −2Bπ · f (2−y)

π ·m = 0, (4.3)

F(4−y)
π · log(Fπ/ fπ)− y ·n f f (6−y)

π Bπ ·m/m2
d f 2

d = 0, (4.4)

(F2
π /M2

π) · (3log(Fπ/ fπ)+1)− (M2
d/m2

d) · ( f 2
π/M2

π)− y(y−1)n f f 4
π/2m2

d f 2
d = 0. (4.5)

The general scaling relation of Eq.(4.3) is independent from the choice of the dilaton poten-
tial [12,28]. The dilaton potential Vd leads to two added non-linear conditions, with Eq.(4.4) set by
V ′d(χ = Fd), and Eq.(4.5) set by V ′′d (χ = Fd), as in [12]. With unchanged scaling relation from
Eq.(4.3), two alternative equations are derived from V ′σ (χ = Fd) and V ′′σ (χ = Fd),

F(4−y)
π · (1− f 2

π/F2
π )−2y ·n f f (6−y)

π Bπ/m2
d f 2

d ·m = 0, (4.6)

3F2
π /M2

π − f 2
π/M2

π −2M2
d/m2

d · f 2
π/M2

π − y(y−1)n f f 4
π/m2

d f 2
d = 0. (4.7)

Physical parameters from dilaton EFT fits: The fitted posterior distributions of the physical
parameters fπ ,Bπ ,y,md/ fπ , fd/ fπ and their correlations are shown in Fig. 4 and Fig. 5. Approx-
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Figure 4: MCMC based posterior probability distributions of five fitted physical parameters and their correlations for
the Vd choice of the dilaton potential (rep6 sextet model). The MCMC algorithm is explained in the text. Red lines
indicate fits of normal distributions to the histograms which show some deviations from the Gaussian shape as expected.

posterior fπ for rep6 Vσ :

0.0125 0.013 0.0135 0.014 0.0145 0.015 0.0155 0.016 0.0165 0.017

  f   fit parameter

0

100

200

300

400

500

600

700

800

 p
os

te
rio

r 
M

C
M

C
 d

is
tr

ib
ut

io
n

 = 3.20       rep6 (sextet)  nf=2            V   potential   

f  = 0.01467  0.00067

posterior Bπ for rep6 Vσ :

3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8

  B   fit parameter

0

100

200

300

400

500

600

700

 p
os

te
rio

r 
M

C
M

C
 d

is
tr

ib
ut

io
n

 = 3.20       rep6 (sextet)  nf=2            V   potential   

B  = 3.42  0.12

posterior γ for rep6 Vσ :

0.95 1 1.05 1.1 1.15 1.2 1.25

    fit parameter

0

100

200

300

400

500

600

700

800

 p
os

te
rio

r 
M

C
M

C
 d

is
tr

ib
ut

io
n

 = 3.20       rep6 (sextet)  nf=2            V   potential   

 = 1.101  0.038

posterior md/ fπ for rep6 Vσ :

1.5 2 2.5 3 3.5 4 4.5

  m
d
/f   parameter

0

200

400

600

800

1000

1200

 p
os

te
rio

r 
M

C
M

C
 d

is
tr

ib
ut

io
n

 = 3.20       rep6 (sextet)  nf=2            V   potential   

m
d
/f  = 2.69  0.35 Matrix plot of the five fitted physical parameters with

their posterior histograms in the diagonal and off-
diagonal scatter plots of their correlations. Four of
the histograms are also shown on the left with fitted
means and 1σ equivalent percentile errors (the dis-
tributions are close to normal).

Figure 5: MCMC based posterior probability distributions of the five fitted physical parameters and their correlations
for the Vσ choice of the dilaton potential (rep6 sextet model). Again, red lines indicate fits of normal distributions to the
histograms which show some deviations from the Gaussian shape as expected.

imating the IML procedure, the distributions were generated in two stages. At the first stage,
Mπ(m), Fπ(m) correlated pairs of distribution functions were generated from extrapolation to in-
finite volume using finite size scaling (FSS) analysis separately at each fermion mass. Lattice
input to the FSS fits was provided by three pairs of six Mπ(m,L,Lt), Fπ(m,L,Lt) data from three
volumes with linear sizes L,Lt in respective spatial and time directions. Maximum Likelihood
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FSS fits gave us correlated infinite volume Mπ(m), Fπ(m) pairs with covariance matrices which
were used in Markov Chain Monte Carlo (MCMC) samples to generate the posterior probabil-
ity distributions of the Mπ(m), Fπ(m) pairs as input for the second stage of the fitting procedure.
Md(m) probability distributions for input to the second stage were generated without FSS from
normal distributions with previously determined variances at the largest available volume for each
m. For each drawing from the Mπ(m), Fπ(m),Md(m) distributions, 12 input data were selected
using m = 0.015/0.020/0.030/0.040 for the non-linear fitting procedure of the five physical pa-
rameters from respective Eqs.(4.3-4.7) of the two dilaton potentials. We checked that adding the
lowest fermion mass m = 0.0010 with incomplete FSS for Fπ would not have any significant effect
on the Mπ(m), Fπ(m) distributions or the posterior distributions of the fitted physical parameters
at the second stage. The posterior distributions of the five fitted physical parameters and their cor-
relations were generated from the order of ten thousand drawings from the Mπ(m),Fπ(m),Md(m)

distributions as shown in Fig. 4 and Fig. 5.
Results for the Vd(χ) choice of the dilaton potential in Eq.(4.2a) have some remarkable fea-

tures with important implications for added post-conference analysis. The dilaton mass md/ fπ =

1.56(28) is dramatically lower than extrapolated results from chiral perturbation theory with less
control. If confirmed, this light dilaton state alone could change our perspective on the sextet model
for future investigations. The anomalous dimension γ = 0.870(93) is consistent with direct deter-
mination from the renormalized mode number distribution of the Dirac operator. The estimate of
fπ = 0.0109(21) is lower than what was obtained in earlier χPT fits which might require the re-
calibration of the separation between the 0++ scalar and the associated heavy resonance spectrum.
The value of Bπ = 2.76(28) is close to what was determined from χPT as shown in Fig. 3. How-
ever, the result fd/ fπ = 2.94(35) would present phenomenological difficulties for potential BSM
applications.

Perhaps not surprisingly, results from the choice Vσ (χ) in Eq.(4.2b) are closer to what was
expected from σ -model inspired χPT estimates. The value of Bπ = 3.42(12) is practically the
same as what we obtained from chiral log fits in Section 3 and the dilaton mass is heavier in
fπ units, md/ fπ = 2.69(35), closer to what we expected earlier for the 0++ scalar. The ratio
fd/ fπ = 3.22(37) is close to what we obtained with the choice of Vd(χ), with similar challenges
for Electroweak embedding.

Sensitivity of the light scalar mass to the choice of the dilaton potential is the most striking
outcome of the dilaton analysis in the sextet model. This might require revised strategies in future
work including questions on the size of corrections to the tree-level approximation, affected by the
small value of fπ . It is interesting to note that the Vd(χ) choice from Eq.(4.2a) is preferred near the
CW from theoretical arguments in [1], not directly applicable to the sextet model.

4.3 Dilaton EFT fits from Vσ and Vd dilaton potentials: n f = 8 model

With input data from [7], the histograms of four fitted physical parameters fπ ,Bπ ,y,md/ fπ ·
fd/ fπ and their correlations are shown in Fig. 7 and Fig. 6. Using the largest volumes from [7] did
not allow us for MCMC based FSS, instead normal distributions of Mπ ,Fπ were inputs to the fitting
procedure. After experimenting with five-parameter fits, we reduced the analysis to four physical

parameters without Md input. Accordingly, we did not use Eq.(4.5) and (4.7) with inputs from Md

in [7], and only the product md/ fπ · fd/ fπ was fitted without separating md/ fπ .
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Figure 6: Histograms of the four fitted physical parameters and scatter plots of their correlations for the Vd choice of
the dilaton potential (rep3 n f = 8 model).
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Figure 7: Histograms of four fitted physical parameters and scatter plots of their correlations for the Vσ choice of the
dilaton potential (rep3 n f = 8 model).

The Vσ based n f = 8 fits do not show unexpected features. On the other hand, we had diffi-
culties to interpret the Vd based dilaton fits, in particular the very low value of fπ = 0.00041(22)
calling into question the leading tree-level approximation to Vd based tests of the dilaton EFT. We
will return to investigate some stable way of including the scalar mass Md directly in the fitting
procedure.

There is, however, an important aspect of dilaton EFT based fits to the n f = 8 model which is
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not affected by details of our fitting procedure. It was argued in [30] and presented at the confer-
ence [31] that the analysis of the n f = 8 model in [12, 13] is based on input data in the high-mass
range of fermion mass deformations where Mπ and Fπ would show conformal scaling. It was esti-
mated in [30,31] that two orders of magnitude drop would be required from the currently available
fermion mass range before the onset of chiral behavior is reached at very low fermion masses, out-
side the reach of realistic lattice simulation. The argument was based on Eq.(4.1) of the EFT for
the choice Vd of the dilaton potential in Eq.(4.2a). We checked our input data set Mπ ,Fπ from the
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Figure 8: Inconsistencies of the conformal tests in the n f = 8 model, exhibiting considerable variation of the Mπ/Fπ

ratio in the fitted fermion mass range from incompatibility conformal exponents between Mπ and Fπ .

recent LSD publication [7] for conformal behavior in the fermion mass range of the input data. The
results in Fig. 8 for Mπ and Fπ do not show conformal behavior in the mass range of the dilaton
analysis with considerable variation of the Mπ/Fπ ratio and inconsistent conformal γ exponents
from forced conformal fits of Mπ and Fπ . Although the identification of current n f = 8 simulations
with the high-mass conformal regime will require correction terms [31], the estimated two order of
magnitude drop in m for reaching the regime of χSB might not be far from what is required. At the
conference we presented an idea how this large drop in m might be reached instead in the ε-regime
of χSB.

5. Dilaton EFT analysis in the ε-regime and RMT

In the ε-regime, close to the chiral limit where the pion correlation length far exceeds the
linear size of the finite volume, the EFT Lagrangian of Eq.(4.1) simplifies to

Lε =
1
2

∂µ χ∂µ χ − Vd(χ)+
m2

π f 2
π

4
( χ

fd

)y tr
[
Σ0 +Σ

†
0

]
. (5.1)

In Eq.(5.1) the coupling of the dilaton to the Σ0 zero mode of the pion field is represented by
the χ(x) field and can be treated by systematic expansion. In the strict m→ 0 chiral limit the
pions become decoupled from the dilaton field. The challenge of this approach is to get close
enough to the chiral limit at extremely small fermion masses. In fact, from careful studies of the
lowest eigenvalues of the Dirac operator we determined that this limit would be feasible in large
volume simulations at extremely small m values. The feasibility was demonstrated by decreasing
the fermion mass m two orders of magnitude, down to m = 0.000010 at the sextet gauge coupling
β = 3.20 with an estimated inverse pion mass of M−1

π ≈ 125 in the equivalent infinite volume
p-regime. The simulation results from 644 and 483× 96 lattice volumes with Mπ ·L < 1 at m =

0.000010 are shown in Fig. 9.
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Figure 9: The spectral density of the full spectrum in the sextet model is shown on the left panel. Quartet averages
of the lowest 24 eigenvalues are shown on the right panel for input into RMT analysis of the ε-regime. The shape and
distribution of the lowest eigenvalues favors χSB close to the chiral limit.

In the limit of asymmetric aspect ratio L/Lt → 0 at fixed spatial size L we cross over to the
δ -regime where in the chiral limit the dilaton EFT is further simplified for rotator analysis of the
pion and the (de)coupling of the dilaton field,

Lδ =
1
2

∂µ χ∂µ χ − V (χ)+
f 2
π

4
( χ

fd

)2 tr
[
∂tΣ0 ∂tΣ

†
0

]
. (5.2)

The time derivative ∂tΣ0 of the zero three-momentum component of the pion field controls the
coupled rotator dynamics on the SU(2) group manifold. Further analysis of Eqs.(5.1,5.2) remains
outside the scope of this report.

6. Conclusions
Based on the hypothesis of dilaton EFT description, tantalizing test results were obtained from

the analysis of the sextet model with particularly interesting physical parameters for the Vd form
of the dilaton potential. It is important to note that the dilaton description of the light scalar from
broken scale invariance does not follow from the β -function based walking behavior. Conformal
symmetry breaking is not necessarily coupled to walking and requires better theoretical under-
standing. In addition, extended statistical analysis will be required for the full implementation of
the implicit Maximum Likelihood method to assess the sensitivity and quality of our fitting proce-
dure to different forms of the dilaton potential. Ratios of physical parameters depend on the Vd or
Vσ form of the dilaton potential at fixed lattice spacing, calling for precision studies when the cut-
off is varied in large volumes and close to the chiral limit. The ε-regime offers new opportunities,
perhaps with direct determination of the effective dilaton potential from methods we developed and
tested earlier in Yukawa theories of scalar fields and fermions [43,44]. It is also an important open
question, if the application of the dilaton EFT survives other tests of fermion mass deformations,
like χPT effects in the chiral condensate, or the renormalized gauge coupling on the gradient flow.
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