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theories near the conformal window to the SU(3) gauge theory with Nf = 8 fermions in the

fundamental representation. Numerical data for this theory suggest the existence of a large-mass

regime, where the fermion mass is not small but nevertheless the effective theory is applicable

because of the parametric proximity of the conformal window. In this regime, we find that the

mass dependence of hadronic quantities is similar to that of a a mass-deformed conformal theory,

so that distinguishing infrared conformality from confinement requires the study of subleading

effects.
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1. Introduction

Triggered by numerical results [1, 2, 3, 4]1 obtained in simulations of gauge theories with

fermions which are generally believed to be near the conformal window, we developed a systematic

effective field theory (EFT) to describe the long-distance behavior of such theories, specifically,

those with an SU(Nc) gauge group with Nf fermions in the fundamental representation [5]. In this

talk, we report on more recent work aiming to compare the EFT directly with numerical data [6].

In particular, Ref. [6] made the following claims:

• Even if the fermion mass of a near-conformal theory is large compared to the chiral-symmetry

breaking/confinement scale, it can be described systematically by the EFT.

• In this large-mass regime, it is very hard to distinguish such a theory from a mass-perturbed

theory whose massless limit is conformal in the infrared.

• In the case of the SU(3), Nf = 8 theory, either much smaller fermion masses or a much

higher precision will be needed in current simulations.

The rest of this talk will be concerned with a brief review of the explanations for these claims.

2. The effective field theory

Figure 1 shows the hadron spectrum for SU(3) gauge theory with Nf = 8 degenerate funda-

mental flavors, as a function of the fermion mass m. Quite unlike the more familiar case of QCD,

the spectrum contains a very light, and, for these fermion masses, stable 0++ state, nearly degener-

ate with the pseudo-Nambu–Goldstone bosons for the SU(8)L×SU(8)R chiral symmetry breaking,

which we will refer to as the pions.

Clearly, any EFT aiming to describe the low-energy pion physics should also contain a field

for the 0++ state, which, in light of what follows, we will refer to as the dilatonic meson (dilaton,

for short). In order to construct such a theory, we made the following assumptions [5]:

• Scale invariance gets restored as we take the theory closer to the conformal window. For Nf

fundamental flavors in an SU(Nc) theory this happens when Nf crosses into the conformal

region. Technically, nf ≡ Nf/Nc attains the critical value n∗f at this crossing in the limit Nc,

Nf → ∞.

• The theory contains pions associated with chiral symmetry breaking, and a dilaton associated

with breaking of scale symmetry, which becomes massless for nf → n∗f (and m → 0).

• The dilaton potential has a zero, as a function of the dilaton field τ .

Under these assumptions, the following leading-order (LO) lagrangian was constructed in Refs. [5,

6]:

L =
f̂ 2
π

4
e2τ tr(∂µΣ†∂µΣ)+

f̂ 2
τ

2
e2τ (∂µτ)2 (2.1)

1The three latter references quoted here represent the most recent numerical work. For more extensive earlier

references, see Ref. [5].
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Figure 1: The hadron spectrum for SU(3) gauge theory with Nf = 8 degenerate fundamental

flavors, from Ref. [1].

−
f̂ 2
π B̂πm

2
e(3−γ∗)τ tr(Σ+Σ†)+ f̂ 2

τ B̂τ e4τ c1

(

τ −
1

4

)

.

Here γ∗ is the value of mass anomalous dimension at the infrared fixed point at nf = n∗f . Along with

the mass m, the parameter c1 ∝ nf − n∗f is assumed to be small, and the EFT allows a systematic

expansion in these small parameters. The τ field has been shifted so that its LO expectation value

v ≡ ⟨τ⟩= 0 when m = 0.

3. Lowest-order predictions

At non-vanishing m, the LO value for v satisfies the equation

m

c1M̂
= ve(1+γ∗)v , (3.1)

where

M̂ =
4 f̂ 2

τ B̂τ

f̂ 2
π B̂πNf (3− γ3)

. (3.2)

We note that this is an “order-1” equation: both m and c1 are small, and we are assuming a power

counting in which they are parametrically of the same size.
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If m is large enough that the left-hand side of Eq. (3.1) is much larger than one (we will refer

to this range as the “large-mass regime”), we find the approximate solution

ev ≈

(

m

c1M̂

)1/(1+γ∗)

. (3.3)

From this, it follows that all masses and decay constants scale as m1/(1+γ∗). In other words, even

though the theory is in the phase in which chiral symmetry is broken spontaneously at m = 0, all

masses and decay constants exhibit hyperscaling behavior as in a mass-perturbed conformal theory

[7]!

In more detail, let us see how this arises for a few examples. Using exact LO results for

physical quantities, and then relation (3.3), we find, for instance,

Fπ = f̂π ev ∝ f̂π

(

m

c1

)1/(1+γ∗)

, (3.4)

M2
π = 2B̂πme(1−γ∗)v ∝ 2B̂π c1

(

m

c1

)2/(1+γ∗)

,

Mnucleon = M0 ev ∝ M0

(

m

c1

)1/(1+γ∗)

,

where M0 is the nucleon mass in the chiral limit.2 All expressions on the right-hand side of these

equations show the claimed large-mass hyperscaling behavior.

These results are valid as long as loop corrections are small. As usual, loop corrections are

governed by loop expansion parameters such as M2
π/(4πFπ)2 and M2

τ /(4πFτ)2. Considering the

first of these two, we find using the exact LO relations in Eq. (3.4) and Eq. (3.1), that

M2
π

(4πFπ)2
=

2c1M̂B̂π

(4π f̂π)2
v . (3.5)

This is small as long as c1 logm is small, where we used that, in the large-mass regime, v ∼ log m.

This establishes the range of validity of the EFT; for masses larger than this value, loop corrections

become too large for the loop expansion defined by the EFT to be useful.

4. Comparison with numerical results

From our result, that in the large-mass regime all masses and decay constants exhibit hyper-

scaling, it follows that ratios of masses and decay constants are approximately constant in this

regime. Indeed, results obtained in Ref. [1], shown in Fig. 2, show approximate constancy of the

ratio of five different hadron masses with the pion decay constant, as a function of m.

Of course, we need to check whether our LO analysis applies to these data. Indeed, the value

of the expansion parameter (3.5) is roughly equal to 0.1 for the ratios shown in Fig. 2. However,

as also discussed in Ref. [8], it is possible that loop corrections to some quantities are larger than

suggested by this value.

2Note that for small m, the solution (3.3) is not valid, and the nucleon mass does not vanish in the chiral limit, as

long as n f < n∗f .
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Figure 2: The hadron spectrum for SU(3) gauge theory with Nf = 8 degenerate fundamental

flavors, from Ref. [1].

The consistency between our hyperscaling prediction and the data strongly suggests that the

values of m investigated in Ref. [4] are in the large-mass regime. And indeed, this turns out to be

the case. First, fitting the quantity M2
πF

−1+γ∗
π = 2B̂π f̂−1+γ∗m as a function of m yields the estimate

γ∗ ≈ 1 [8]. Using this, and values for the nucleon mass as a function of m obtained in Ref. [4], we

find that at the lightest value of m [6],

am = 0.00125 ⇒
m

c1M̂
∼ 100 . (4.1)

This implies that, to unambiguously determine whether this theory is conformal or breaks chiral-

symmetry in the massless limit, we need either much smaller masses, or enough precision to dis-

entangle subleading effects to the large-mass behavior.

As an additional point of interest, we also find from the numerical data that B̂π/ f̂π ∼ 103,

which may be a sign of “condensate enhancement” in this theory.

5. Conclusion

We briefly summarize our conclusions, referring to Ref. [6] for much more detail.

First, we find that in near-conformal theories, there exists a “large-mass” regime, defined by

m/(c1M̂) ≫ 1, while the region of applicability of the EFT is, parametrically, c1 logm ≪ 1. In

this regime, masses and decay constants show approximate hyperscaling like in a mass-deformed

conformal theory, even though the theory breaks chiral symmetry at m = 0.
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Second, we find that current simulations in the SU(3), Nf = 8 theory are in the large-mass

regime, with m/(c1M̂)≥ 100. Therefore, in this theory, either much smaller masses or much higher

precision will be needed to disentangle subleading effects, and distinguish, numerically, between a

mass-deformed conformal theory and a theory with spontaneous chiral symmetry breaking in the

massless limit.

Summarizing, assuming the validity of our EFT, it provides a possible explanation why it

is so difficult to distinguish a conformal theory from a chiral-symmetry breaking theory near the

conformal sill.
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