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1. Introduction

Lattice calculations of weak matrix elements play an important role in searching for physics
beyond the Standard Model. Weak-boson exchanges in low-energy processes can be reduced to an
effective weak Hamiltonian composed of four-quark operators by integrating out the weak bosons
and quarks heavier than the renormalization scale pt. Then, the information at high energies > u
is expressed in terms of the Wilson coefficients, the coefficients of the four-quark operators in the
weak Hamiltonian.

For many processes, the corresponding Wilson coefficients are known to one- or two-loop
level in perturbative QCD both in the MS and RI/(S)MOM schemes. Therefore the four-quark
operators need to be renormalized at the same renormalization scale and in the same scheme as the
Wilson coefficients to construct the proper weak Hamiltonian. The RI/(S)MOM scheme is more
straightforward than the MS scheme for actual lattice calculations.

We also need to match the number of flavors in the renormalization scheme of the Wilson
coefficients and the four-quark operators. The perturbative calculation of the Wilson coefficients
in the three-flavor theory needs a conversion from those in the four-flavor theory at an energy scale
below the charm threshold m. ~ 1.3 GeV, where perturbative calculation is quite ambiguous. While
the difference between the three- and four-flavor Wilson coefficients is not significant if the form
of the four-quark operators in the three- and four-flavor theories is the same and the sea charm
effect is not significant, the issue is more serious when the charm quark can be involved in the
four-quark operators in the four-flavor theory. In such a case, it is preferable to introduce the four-
quark operators in the four- or five-flavor theory so that we do not need the three-flavor Wilson
coefficients. However, if the lattice ensemble on which matrix elements are calculated is too coarse
a~! <2 GeV to introduce the charm quark, a non-perturbative matching of the Wilson coefficients
between the three- and four-flavor theories is needed. The RBC and UKQCD collaborations are
facing this issue in the calculation of direct CP-violating effects in K — #w 7w decays. Their original
result contained 12% systematic uncertainty because of the perturbative matching of the Wilson
coefficients Ref. [M].

In this work, we formulate a strategy to nonperturbatively match the three- and four-flavor Wil-
son coefficients and perform some exploratory calculations. As explained in Section [, the strategy
basically uses the two-point functions of four-quark operators, which are gauge invariant and pre-
vent mixing with gauge-noninvariant operators and operators that are forbidden by equations of
motion. In order to take the continuum limit of the matching matrix accurately, we propose to take
the spherical average of two-point functions [P], which is briefly explained in Section B. Some
exploratory results for the spherical average of two-point functions of the three-flavor operators in
the (8, 8gr) representation are shown in Section .

2. Non-perturbative three/four-flavor matching of Wilson coefficients

‘We start with the weak Hamiltonian

S, S, S, g S,
HW :anf,i(“)Onf,i(“) _ :an (ALL) Onf (u) , 9 (21)
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where 1 denotes the renormalization scale in a scheme indicated by the superscript Sn}_. The num-
ber of flavors n’f as the subscript of § is the number of sea quarks, while the ny as the subscript
of O and w is the number of valence quarks that characterizes the concrete form of operators. For
simplicity, we use vector and matrix notation as in the RHS of Eq. (1) by omitting the index i of
operators. The superscript T denotes the transposition of the vector or matrix. The weak Hamilto-
nian is independent of n7 in the sense that matrix elements calculated in QCD between states which
involve an energy scale E do not change when n; is increased above n'; f ! which is chosen so that
quark flavors indexed by n > n ff / have masses m > E.

If we calculate weak matrix elements with three-flavor operators in 2 4 1-flavor QCD ensem-
bles, we need the Wilson coefficients wg‘ (u) in the three-flavor theory to obtain the proper weak
Hamiltonian

(rm|Hw|K) = w5 (u)T <7t7r‘0§3(u)‘1<>2+1. (2.2)

However, perturbative calculation of w§3 (1) requires a matching from wi“ (u') that is performed

below the charm threshold, which induces a large systematic error (~ 12%) [@]. Therefore a non-
perturbative matching in a non-perturbative scheme is desired. The RI/(SYMOM scheme is not
suitable since it cannot prevent mixing with irrelevant operators allowed by a gauge-fixing and
contact terms, which may become more important at low scales. A position-space scheme X is a
reasonable scheme to implement the non-perturbative matching since it prevents significant mixing
with gauge-noninvariant operators and operators that are forbidden by the equations of motion.

X)l
We consider the equality of two-point function <HW (x)05 (u; y)T>N for 3 and 4 flavors:
r

w3 ) (0P ()0 (uy)') = W) (Of oty @3

24141

which is valid at long distances 1/|x —y| < m.. Then we obtain

T -1 —1
W) = (23 s 1/ ) G ) 2 M1

a al ’ T /
x 2" (1,1 /@) G (1 —y) 20 ™ (a1 fa) Wit (ue), 24
where we define )
lat[Ny] lat . lat .
G (1 fazx—y) = (O31(1/azx) O (1) >Nf, 25)

and introduce renormalization matrices which satisfy
S / S ’ /lat lat
n (W5x) =2 (1,1/a)05(1/as), (2.6)

If the sea charm quark is neglected, the relation becomes easier

T -1
w§3(u3) ~ (Zgi/lat(,ugl/a) ) Glat[2+1](1/ a;x—y)

/ T
% Glat[2+1](1/ ax — y) Zgz/lat(ﬂzly 1/(1) Wi4 <‘u4)7 (27)
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so that renormalization matrices in the position-space scheme are not needed. In addition, if the
three-flavor operators are the same as the four-flavor operators O3z = Oy, i.e. if the valence charm
quark cannot be involved in the operators, the matching between the three- and four-flavor Wilson
coefficients is identical as long as the sea charm quark is neglected. On the other hand, if the charm
quark is present in the four-flavor operators, as in the case of K — w7 decays, the matching of the
Wilson coefficients is needed if the weak matrix elements are to be calculated with the three-flavor

operators. Note that we actually need the lattice Wilson coefficients w13*“, which can be obtained

from Eq. (Z72) if we simply drop the multiplication by (2233/ 1m)_1 from the RHS of Eq. (Z72),

removing any reference to the scheme S3.

We will choose S = §' = RI/SMOM, in which the Wilson coefficients in the four-flavor the-

ory can be calculated perturbatively. To obtain the Wilson coefficients in the three-flavor theory,
RI/SMOM3 /lat

we need to calculate the four-flavor renormalization matrix Z,, (u,1/a), the two-point
Green’s functions of two three-flavor operators Glﬁ[”l](l/ a;x —y) and those between a three-
lat[2+1]

flavor operator and a four-flavor operator G5 ;- '(1/a;x —y). In the following sections, we fix
y = 0 for simplicity and present our strategy to calculate the two-point functions with controlled
discretization errors and the results from a test calculation.

3. Spherical average of two-point functions

The three-flavor Wilson coefficients calculated with the strategy proposed in the previous sec-
tion depend on x, the relative distance between two operators in the correlators. As long as we in-
vestigate in the region 1/|x| < m, the x-dependence may show some unphysical behavior and the
finite cutoff effects may be a possible source of it. Although distance scale in 1/|x| < m, is much
longer than recently used lattice spacings, discretization effects on correlators at 1/|x| ~ 400 MeV
are more than 10% depending on lattice spacing and much larger than statistical errors. Thus, it is
preferable to take the continuum limit to avoid such ambiguity. However, in order to take the con-
tinuum limit, we need to calculate correlators at a fixed physical distance for each lattice spacing,
while correlators on the lattice have values only at discrete points that depend on lattice spacing.

We will apply the spherical averaging technique [[] to evaluate correlators at any physical
distance as well as to reduce discretization errors. While correlators on the lattice violate O(4)
symmetry and depend on lattice points in a complicated way, this technique enables us to obtain
correlators that depend only on the distance |x| as if they have O(4) symmetry. There are two steps
to evaluate sphere-averaged correlators using lattice correlators fw,]:

e Interpolation In this step, we estimate the values of correlators at any physical location x.
In the case of one dimension, it is easy to verify that the linear interpolation

fa(x) _ (a(n+1)_x)fa,n“‘(x_an)fa,nJrl, (31)

a

n Ref. [2], we defined f; , as a correlator multiplied by x%4 with the dimension d of the operator and divided by
the same factor after taking the spherical average to avoid strong x-dependence, which may induce a large discretization
error as a by-product of the spherical average.
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cancels the O(a') discretization error that arises from the Taylor expansions of fanand fo,
around x. In the case of four dimensions, the interpolation is modified to
- 4 1
fa)=a™ Y Ao A kdag fypiis piiii (3.2)
i,j, k=0

where ny = |x, /a], [I is the unit vector for the u-direction and we define
Api=la(ng +1—1i)—xyl. (3.3)
It is also easy to verify that this interpolation is free from O(a') errors.

e Average over spheres  While the interpolated correlators in four-dimensions designed
above have values at any physical location, they still violate rotational symmetry and depend
on x in a complicated way. To obtain correlators as a continuous function of only the distance
|x[, we average them over a four-dimensional sphere U}, with the radius of |x],

fa(yxy):f dcfa(x)/ do. (3.4)
U Ul

4. Exploratory calculation of two-point functions of four-quark operators

In this section, we show the result for a preliminary calculation of two-point functions

Gij(x) = (Qi(x)Q,;(»)), 4.1)

of unrenormalized AS = 1 four-quark operators Q; ; in the three-flavor theory. In general, the cal-
culation of these two-point functions requires all-to-all quark propagators since there are diagrams
that contain a quark loop at the sink point. Thus, there may be power divergence from loop dia-
grams, which needs to be eliminated before renormalizing the operators.

Among the AS = 1 operators relevant for the K — 77 matrix elements,

3
Q7= 2SaVu(l—15)da Y, eqqpr(1+%)qp, (4.2)
q=ud,s
37 p—
O = 5soﬂ’u(l —%)dp Z eqqpYu(1+%)qa; (4.3)
q=u,d,s

where ¢ is the electric charge of a quark g the RHSs are summed over the Lorentz index y and the
color indices o and 3, enable us to investigate the simplest case of mixing correlator matrix since
only these two operators belong to the (8,,8z) representation of SU(3),, x SU(3)g symmetry [B, B].
In this article, we show the result for the contribution of the fully-connected diagrams in which all
the quark propagators connect the source and sink points and there is no power divergence. (These
are the only non-zero diagrams if we use the I = 3/2 components of O and Os.)
We use 2+ 1-flavor domain-wall ensembles with three lattice cutoffs a~! ranging from 1.79 GeV

to 3.15 GeV generated by the RBC and UKQCD collaborations. Pion masses are in the region from



NP matching of 3/4-flavor Wilson coefficients in position-space Masaaki Tomii

109

77 he; I I I I I I I ?
88 —8—
78 —— 8 o
102t 5 s
X g e
I =] Q =]
ol g _ 8257 &
> e “gs" 8
8 104} Sl X .
<) %ﬂaéxg °
63 xg
106 T
108 . . . ! ! ! y
0O 01 02 03 04 05 06 07 08 09
1/1xl [GeV]
100 . . . - - - - —3
77 —e— 55
88 —a— ggaxxx
78 F——i Eg@)(xx
-2 QEEEXXX
10t LM ]
— Ee% <
a 25a%
> 25g%
8 10 4 L EIEIOQ 4
=, oB ¥
2[53 EExéé
X
106} EExge 4
= xe
B Xg
5 X
xee
xe
108 . 2 . . ! ! ! y
0O 01 02 03 04 05 06 07 08 09
1/1xl [GeV]

Figure 1: Results for G77(x) (circles), Ggg(x) (squares) and G7g(x) (crosses) calculated on the coarsest
lattice with a~! ~ 1.79 before (upper panel) and after (lower panel) taking the spherical average.

300 MeV to 370 MeV.

Figure 0 shows the results for two-point functions of (8;,8g) operators. Since the correlator
matrix is real symmetric, we take the average of the 78 and 87 elements, which is shown as the
78 element (crosses) in the figure. The upper panel shows the results for G;;(x) before taking the
spherical average. Here, we distinguish different lattice points that are not equivalent with respect to
90° rotations or parity inversion in the four-dimensional hypercubic group. The results are averaged
over sets of lattice points related by hypercubic transformations. The ambiguity due to the violation
of O(4) symmetry could amount to more than x 10 at |x| = 3a as numerical results at |x| = 3a read
G77(0,0,0,3a) = 1.12(1) x 1072 GeV'? and G77(0,a,2a,2a) = 3.41(3) x 10~* GeV'2. From the
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Figure 2: Same as the lower panel of Figure [ but the result on finer lattices, a~' = 2.38 GeV (left panel)
and a~! = 3.15 GeV (right panel).

same observation, the ambiguity at |x| = 6a is about x3. The lower panel shows the results for
the spherical average G;;(|x|). The discretization errors in the spherical average appear to be much
smaller than those in G;;(x). Figure @ show the results for the the spherical average calculated on
finer lattices, a—! = 2.38 GeV (left panel) and a'=3.15GeV (right panel). As mentioned in the
previous section, the spherical averaging technique enables us to evaluate the values of correlators
at any physical distance. Therefore, the matching matrix between the Wilson coefficients in the
three- and four-flavor theories Eq. (IZ4) or (IZ2), which is calculated from two-point functions, can
easily be extrapolated to the continuum limit at any physical distance |x|.

5. Summary

We formulate a non-perturbative strategy to match the three- and four-flavor Wilson coeffi-
cients of AS = 1 four-quark operators. We propose to use two-point Green’s functions of four-
quark operators and their spherical average to take the continuum limit of the matching matrix.
As Eq. (I22) indicates, we also needs the renormalization matrix of the four-flavor operators in a
scheme in which perturbative calculation is available. The four-flavor operators will be calculated
as well as the two-point functions in near future.
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