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1. Introduction

Quark masses are key parameters of the standard model of particle physics, which are not
directly accessible by experiment. Lattice QCD offers a non-perturbative first-principles method to
calculate these masses with controlled uncertainties. In the work presented here we use the O(a)
improved Wilson formulation for the quarks in three-flavour QCD, which has the disadvantage of
explicit chiral symmetry breaking. As a direct consequence, the scale dependent renormalization
constants ZS and ZP, being crucial elements for the computation of renormalized quark masses
based on the bare subtracted and PCAC quark mass definitions respectively, differ for finite lattice
spacings. For Nf = 3 lattice QCD with Wilson-clover fermions and Lüscher-Weisz gluons, ZP

was determined in [1]. ZS, however, is not known for this setup. Our approach is to calculate
the ratio of the two, ZP/ZS, in which the scale dependence cancels. Ward identities have been
introduced in the past for the determination of ZP/ZS in lattice QCD with Wilson-type fermions
[2, 3]. These Ward identities have been obtained for large volumes, typically with (anti)periodic
boundary conditions. Thus in numerical simulations, ZP/ZS was computed for several non-zero
quark masses and consequently extrapolated to the chiral limit [4–8].

Our approach is based on dedicated gauge ensembles with Schrödinger functional boundary
conditions, which has two key benefits: (i) The renormalization constants are not correlated with
the bare quantities they will eventually renormalize; the latter are obtained from large-volume sim-
ulations. (ii) The special boundary conditions allow simulating at, or in practice very close to the
chiral limit, facilitating a massless renormalization scheme; the cutoff effects proportional to the
finite mass are under control. A sketch of the general idea and the Ward identity involved were
presented at last years’ lattice conference [9] and will be elaborated in full length in a future pub-
lication [10]. In this status report we recall the basic elements, summarize preliminary results, and
discuss sources of systematic uncertainties and cutoff effects which are currently under investiga-
tion. We note that, using a different method based on coordinate space renormalization in large
volume, ZP/ZS has also been computed for the same lattice action and coupling range in [11].

2. Ward identities

Our approach to ZP/ZS uses the transformation property of the pseudoscalar density under
small chiral rotations:

δ
a
APb(x) = dabcSc(x)+

δ ab

Nf
ψ̄(x)ψ(x) . (2.1)

For su(Nf) algebras with Nf ≥ 3 the totally symmetric structure constant dabc is non-zero, and we
can establish a relation between the scalar and the pseudoscalar density, which allows us to access
the non-singlet renormalization constants. By inserting equation 2.1 into the axial Ward identity,
and employing Schrödinger functional boundary conditions, we arrive at (see [10] for details)

ZAZP
[
1+abAmq +ab̄Atr(M)

][
1+abPmq +ab̄Ptr(M)

]
×[

f I,abcd
AP (y0 + t,y0)− f I,abcd

AP (y0− t,y0)−2m f̃ abcd
PP (y0 + t,y0− t)

]
=−ZS

[
1+abSmq +ab̄Str(M)

]
f abcd
S (y0)+O(a2)+O(am) ,

(2.2)
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where fAP, f̃PP and fS are Schrödinger functional correlators with proper boundary fields O:

f I,abcd
AP (y0 + t,y0) =−

a6

(N2
f −1)L6 ∑

x,y
〈O ′a(AI)

b
0(y0 + t,x)Pc(y0,y)Od〉 , (2.3)

f̃ I,abcd
PP (y0 + t,y0− t) =− a7

(N2
f −1)L6

y0+t

∑
x0=y0−t

w(x0)∑
x,y
〈O ′aPb(x0,x)Pc(y0,y)Od〉 , (2.4)

f I,abcd
S (y0) =−

a3

(N2
f −1)L6 dbce

∑
y
〈O ′aSe(y0,y)Od〉 . (2.5)

Equation 2.2 can be solved for ZP/ZS, using our knowledge of ZA [14, 17] and neglecting
contributions multiplying the bX and b̄X coefficients, as they vanish in the chiral limit (i.e., mq = 0
in the valence quark sector and tr(M) = 0 in the sea). The four-point functions can be calculated
as the sum of the eight Wick contractions graphically depicted in figure 1. Each of the eight terms
is proportional to the trace of the product of four SU(Nf) generators T a,T b,T c and T d . As the
flavour indices a,b,c and d are not uniquely determined, we can make several choices which result
in different Ward identities. In this status report we will focus on two specific choices which have
no contributions from the disconnected diagrams labeled g and h in figure 1 and are thus less prone
to statistical noise. First, our preferred flavour choice is a = 2,b = 5,c = 6 and d = 8, from now
on labeled WI(2568). Second, as a crosscheck we employ the difference of WI(8383)−WI(4141)
where the disconnected contributions cancel. The ZP/ZS results from WI(2568) and the difference
WI(8383)−WI(4141) are expected to differ only by O(a2). The Ward identities are in principle
valid for any choice of y0 and t, but as we expect contamination close to the temporal borders of
the lattice, we decided to impose the renormalization conditions at y0 = T/2 and t = T/4.

Figure 1: Graphical representation of the Wick contractions contributing to f
ΓΓ̃

, taken from [12].

3. Numerical details

Our simulations are based on gauge ensembles with Schrödinger functional boundary con-
ditions, also used in previous studies [9, 13, 14]. We use Wilson-clover quarks and tree-level
Symanzik improved gluons. The ensembles lie on an approximate line of constant physics with
L ≈ 1.1fm. In table 1 we present the simulation parameters for the individual ensembles. We
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simulate at five different bare couplings, covering the range of the Nf = 2+1 CLS ensembles [15],
which are currently being used for the computation of light quark masses [16]. For each coupling
we investigate several values for κ , corresponding to PCAC masses |am| ≤ 0.014, to be able to
extra- or interpolate to the chiral limit. For now we have one ensemble, labeled B2k1, which vio-
lates the constant physics condition and can be used for checking systematic effects. At the smaller
lattice spacings, our simulations suffer from critical slowing down in the topological charge. Previ-
ous analyses have shown that the influence of this issue on renormalization constants is negligible.
In this preliminary analysis we project all observables to the Q = 0 sector to circumvent this prob-
lem and leave a comparison with a full analysis for the final publication [10].

L3×T/a4 β κ #REP #MDU ID

123×17 3.3 0.13652 20 10240 A1k1
0.13660 10 13672 A1k2
0.13648 5 6876 A1k3

143×21 3.414 0.13690 32 25600 E1k1
0.13695 48 38400 E1k2

163×23 3.512 0.13700 2 20480 B1k1
0.13703 1 8192 B1k2
0.13710 3 22528 B1k3

163×23 3.47 0.13700 3 29560 B2k1

203×29 3.676 0.13700 4 15232 C1k2
0.13719 4 15472 C1k3

243×35 3.810 0.13712 6 10272 D1k1
0.13701 3 5672 D1k2
0.137033 7 6488 D1k4

Table 1: Summary of simulation parameters of the gauge configuration ensembles used in this study, as
well as the number of (statistically independent) replica (#REP) per ensemble ‘ID’ and their total number of
molecular dynamics units (#MDU).

4. Results

We evaluate the correlation functions required for 2.2 on the gauge ensembles presented in
table 1. We use the axial vector current improvement factor cA from [13] and the axial vector
renormalization constant from [17]. Our error analysis is based on the Γ-method, taking into ac-
count slow modes in the simulation [18, 19]. The multiple values of κ for each bare coupling g2

0
enable us to reliably impose a renormalization condition at zero quark mass, where the leading cut-
off effects of O(am) vanish. In figure 2 the chiral extrapolation is illustrated for g2

0 = 1.7084. The
mass-dependent improvement factors denoted bX and b̃X in 2.2 are neglected, as their contribution
vanishes in the chiral limit and their inclusion would only result in a different slope.

The deviation from the chiral limit is estimated by the PCAC mass with improved definition of
the lattice derivative, which we average over the central third of the temporal extent of the lattice.
We compare two different ZP/ZS determinations, both based on WI(2568). The data points labeled
‘massless’ are determined by neglecting the mass term in equation 2.2, which arises as a contact
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Figure 2: Left: Preliminary chiral extrapolation of ZP/ZS derived from WI(2568) without and with mass
term for g2

0 = 1.7084. Data points from ensemble B2k1 violate the constant physics condition and are
shown for comparison. Right: Preliminary results for ZP/ZS from WI(8383)-WI(4141) and WI(2568) with
interpolating Padé fits. Dashed lines indicate the bare couplings used in CLS simulations.

term, while points labeled ‘massive’ are based on the full Ward identity. Both conditions agree in
the linear extrapolation to the chiral limit. The inclusion of the mass term allows for a smoother
extrapolation with a smaller uncertainty.

As mentioned earlier, all our gauge ensembles are tuned to lie on a line of constants physics.
This tuning was done via the universal 2-loop β -function as explained in [13]. After the final scale
setting [20] it turned out, that the resulting variation of the box size is of the order 10%. A variation
of the physical box size is expected to effect the renormalization constants at order (a/L)2 [12] and
could possibly have a similar magnitude as the statistical uncertainty. Since ZP/ZS has not been
determined in the Schrödinger functional before, it is crucial to further investigate this issue.

For now, we are only able to estimate the violation of the constant physics condition with
the help of ensemble B2k1, where we simulated an additional bare coupling at L/a = 16 and one
value of κ . The respective data points are depicted in the left part of figure 2, labeled ‘no constant
physics’. They align fairly well with the data points from ensembles B1 within the statistical uncer-
tainty, which gives the impression that the aforementioned issue is subleading. Unfortunately, two
contrary effects obstruct a definite conclusion: While the slightly higher bare coupling is expected
to shift ZP/ZS to a lower value, the finite positive mass does the opposite. The influence of the
varying box size is therefore not decisively clear. To settle this issue, we plan to perform further
simulations at β = 3.676 and vary the physical extent from L/a = 20 to 16, 12 and 8 with two
values of κ each. This will enable us to judge how a moderate to stark variation of the physical
extent of the lattice influences our observable in the chiral limit.

Our preliminary results for ZP/ZS are presented in the right part of figure 2, the given uncer-
tainties are the statistical error from the linear fit to the chiral limit and a systematic component
estimated by the difference of the massless and the massive renormalization conditions, both added
in quadrature. Effects from the violation of the line of constant physics are not included yet. For
orientation, the bare couplings of the Nf = 2+1 CLS ensembles are indicated by dashed lines. The
data points derived from both ZP/ZS determinations align nicely and seem to approach each other
towards smaller bare couplings. We observe that the absolute statistical uncertainties grow with
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increasing coupling. This makes it hard to discern whether the difference between the two determi-
nations are actually of leading O(a2), as it should be in the O(a) improved theory. The data points
at g2

0 = 1.8181 seem a little off, as the two points agree within statistical error, while we expect
a larger deviation. However, we want to remind the reader that CLS also considered this inverse
coupling at an initial stage of their simulations, but later discarded these ensembles, because large
cutoff effects were observed [15]. In fact a similar effect could come to play in our project as well,
and one could think about giving the data points a lower weight for the final interpolation formula
as it is irrelevant for the CLS range and just used to stabilize the fit. To settle this issue, we plan to
increase the number of gauge configurations for the largest bare coupling by a factor of 8.

Another source of cutoff effects we have not investigated yet, are the insertion times of the op-
erators in equation 2.2. While the Ward identities are valid for any choice of y0 and t1 by definition,
boundary effects and contact terms can lead to additional cutoff effects. To get an idea of the size
of these effects, we plan to vary the insertion times systematically for one bare coupling.

5. Outlook

In this report we focus on two possible choices of flavour indices. There are several other
choices under investigation, in some of which the disconnected quark diagrams contribute. Each
choice of flavour indices, insertion times for the Ward identities, and plateau region for the PCAC
mass leads to a determination which differs from others by O(a2) terms. By comparing the dif-
ferent ZP/ZS results and by increasing the statistical precision at the coarsest lattice spacing under
investigation, we will be able to estimate these cutoff effects more accurately. The only source of
systematic uncertainty that has not yet been accounted for in our analysis is the violation of the
constant physics condition. We are currently examining its effects along the lines described above.
As a final crosscheck we will be able to compare our results with the ongoing determination of
Z = ZP/(ZSZA), reported in [21, 22], combining it with the axial vector renormalization constant.
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