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We present a nearly final analysis of the u/d and s quark masses, extracted using the PCAC quark
masses reported in [1]. The data is based on the CLS N f = 2+1 simulations with Wilson/Clover
quarks and Lüscher-Weisz gauge action, at four β values (i.e. lattice spacings) and a range of
quark masses. We use the ALPHA results of [2] for non-perturbative quark mass renormalisa-
tion and RG-running from hadronic to electroweak scales in the Schrödinger Functional scheme.
Quark masses are quoted both in the MS scheme and as RGI quantities.
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1. Introduction and setup

Here we report of the ALPHA Collaboration’s analysis of the u/d and s quark masses us-
ing Wilson fermions. The starting point is the computation of light PCAC bare quark masses
(up/down and strange), performed in refs. [1, 3] with N f = 2+1 dynamical sea quarks. The gauge
action is the Lüscher-Weisz action with tree-level coefficients [4], and the fermion action is non-
perturbatively O(a) improved, with the value of the clover coefficient cSW obtained in [5]. The
boundary conditions are periodic in space and open in time, as detailed in ref. [6].

Simulations have been carried out at four lattice spacings: a ≈ 0.050, 0.064, 0.076 and
0.086 fm, corresponding to lattice couplings β = 3.7, 3.55, 3.46 and 3.40 respectively. In order to
keep finite-size effects under control, all ensembles have LMπ & 4 and the time extent varies from
T = 2L to T = 3L (where L3×T is the lattice size). The pion mass Mπ varies between 200 MeV
and 420 MeV, and the kaon mass MK between 420 MeV and 470 MeV. A detailed overview of the
simulations can be found in ref. [1].

For each lattice coupling β we have ensembles with different values of the hopping parameters
κ1 = κ2 and κ3 (except for β = 3.46 where we only have one ensemble with three degenerate quark
masses). The bare subtracted quark masses are defined as mq,r = 1/(2κr)− 1/(2κcrit), with κcrit

the critical (chiral) point. The index r labels quark flavours: we use values 1 and 2 for the two
degenerate light quark flavours (u and d), and 3 for the strange quark. These masses are chosen so
that their mass matrix, at a given β , satisfies the condition

TrMq = 2mq,1 +mq,3 = constant. (1.1)

This condition ensures that the improved bare gauge coupling

g̃2
0 ≡ g2

0

(
1+

1
N f

bgaTrMq

)
(1.2)

is constant up to O(a2) effects, for any bg. Consequently, in the improved theory a constant g̃2
0(a)

corresponds to fixed lattice spacing. However, a constant TrMq does not correspond to a constant
trace of the renormalised quark mass matrix MR, since [8, 9]

TrMR = Zm[(1+ad̄m TrMq)TrMq +adm Tr(M2
q)]+O(a2). (1.3)

The dm counter-term is proportional to squared masses and this violates a constant TrMR require-
ment by O(a) effects. This is an undesirable feature, since we wish to stay on a constant-physics
trajectory (up to O(a2)), as the bare parameters (masses) are varied. This problem can be be
avoided by redefining the chiral trajectory in terms of φ4 = const. [1], where

φ4 ≡ 8t0
(

M2
K +

1
2

M2
π

)
. (1.4)

Here t0 is a gluonic dimension-two quantity defined using the Wilson flow [10]. This requirement
gives a Symanzik-improved constant physics condition. The improved bare coupling g̃2

0 now suffers
from O(amq trMq) discretisation effects due to higher-order χPT contributions, but these turn out
to be small and can be ignored.
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The values of the bare quark masses are chosen so that one is approximately at the physical
value of φ4. The precise value of φ

phys
4 (and tphys

0 ) is found a posteriori, as part of the scale setting.
The small differences between the target and measured values of φ4 and φ2 for each ensemble can be
corrected for by expanding observables in powers of ∆mq, and computing the relevant coefficients
— see [1] for details. The aim is to express the computed quantities of interest (in our case the
quark masses) as functions of

φ2 ≡ 8t0M2
π , (1.5)

with φ4 held fixed at φ
phys
4 , and eventually extrapolate them to φ

phys
2 = 8tphys

0 m2
π (where mπ is the

physical pion mass).
Following ref. [1] we define the bare correlation functions

f rs
P (x0,y0) =−

a6

L3 ∑
~x,~y
〈Prs(x0,~x)Psr(y0,~y)〉, f rs

A (x0,y0) =−
a6

L3 ∑
~x,~y
〈Ars

0 (x0,~x)Psr(y0,~y)〉, (1.6)

where the bare pseudoscalar density and axial current are

Prs(x) = ψ̄
r(x)γ5ψ

s(x), Ars
0 (x) = ψ̄

r(x)γ0γ5ψ
s(x)+acA∂0Prs(x) (1.7)

(the indices r,s label quark flavours). These two-point functions are estimated with stochastic
sources located near the boundaries as described in refs. [1, 3]. The O(a)-improvement coefficient
cA has been tuned non-perturbatively in ref. [7]. The bare PCAC mass is then defined through the
ratio

mrs =
f rs
A (x0 +a,y0)− f rs

A (x0−a,y0)

4 f rs
P (x0,y0)

. (1.8)

This PCAC quark mass is re-expressed as a dimensionless quantity through the definition

φrs ≡
√

8t0mrs, (1.9)

and the corresponding renormalisation group invariant (RGI) dimensionless quantity is then given
by

φ
RGI
rs =

M
m(µhad)

φ
R(µhad) = ZM

(
1+(b̃A− b̃P)amrs +(b̄A− b̄P)aTrMq

)
φrs +O(a2), (1.10)

where the renormalisation coefficient ZM is

ZM(g2
0) =

M
m(µhad)

ZA(g2
0)

ZP(g2
0,aµhad)

. (1.11)

The first factor, M/m(µhad), is the ratio of the RGI quark mass M (in physical units) to the renor-
malised quark mass m(µhad). The second factor, ZA(g2

0)/ZP(g2
0,aµhad), is the ratio of the axial

current normalisation ZA(g2
0) to the pseudoscalar density ZP(g2

0,aµhad). The former is scale inde-
pendent and depends solely on the bare gauge coupling, while the latter depends on a renormalisa-
tion scheme and a renormalisation scale which we set in the hadronic region of low energies.

The quark mass RG-running was carried out non-perturbatively up to µpt ∼ 100 GeV in the
Schrödinger Functional scheme for a theory with N f = 3 massless quarks in ref. [2]. Standard
step-scaling functions were obtained in the continuum, by extrapolating results computed on small
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lattices at fixed renormalisation scale µ . Beyond the scale µpt the RG-running is done perturbatively
(at 2-loops for the quark mass and 3-loops for the gauge coupling). The result quoted in ref. [2] is

M
m(µhad)

= 0.9148(88), (1.12)

for µhad = 233(8) MeV; the error encompasses both statistical and systematic effects.
We use the axial current renormalisation parameter ZA(g2

0) obtained on the chirally rotated
Schrödinger Functional setup in ref. [11]. The renormalisation parameter ZP(g2

0,µhad) was com-
puted in ref. [2] for the same action and in the Schrödinger Functional scheme at fixed scale µhad,
in the range of inverse gauge couplings β ∈ [3.40,3.85]. This is the range covered by the large
volume ensembles of ref. [1], from which our bare PCAC masses φrs are extracted. The final result
is summarised as

ZM(g0) = Z(0)
M +Z(1)

M (β −3.79)+Z(2)
M (β −3.79)2, (1.13)

where

Z(0)
M = 2.270073× M

m(µhad)
, Z(1)

M = 0.125658× M
m(µhad)

, Z(2)
M =−0.464575× M

m(µhad)
, (1.14)

with covariance matrix

cov(Z(i)
M ,Z( j)

M ) =

 0.164635×10−4 0.215658×10−4 −0.754203×10−4

0.215658×10−4 0.121072×10−2 0.308890×10−2

−0.754203×10−4 0.308890×10−2 0.953843×10−2

 . (1.15)

The quoted errors only contain the uncertainties from the determination of ZA and ZP at the hadronic
scale. The error of the total running factor M/m(µhad) in eq. (1.12) only affects the continuum limit,
and is only included after the extrapolation to vanishing lattice spacing.

As seen from equation (1.10), besides the renormalisation parameter ZM, we also need the
mass-dependent improvement coefficients (b̃A− b̃P) and (b̄A− b̄P). We ignore the latter, as it is
O(g4

0) in perturbation theory. The coefficient (b̃A− b̃P) is known in 1-loop perturbation theory and
has the value (b̃A− b̃P) =−0.0012g2

0. However, we use a preliminary value from a non-perturbative
determination from the ALPHA Collaboration [14]:

b̃A− b̃P =
1.03652(g2

0)
3−0.863388(g2

0)
4 +0.109868(g2

0)
5

0.956281(g2
0)

3−0.246337(g2
0)

4−0.116847(g2
0)

5 . (1.16)

The perturbative and non-perturbative values are quite different for the ensembles used in this study,
but the effect on the final result is negligible.

2. Chiral Fits

Having obtained the renormalised, dimensionless quantities φ R
12 and φ R

13 (where indices 1,2
refer to the degenerate light quarks and 3 is the strange quark at the physical point) we now proceed
to do the chiral and continuum extrapolation. We adapt the standard χPT expressions to our specific
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parametrisation of our data, which leads to

φ
R
12 = φ2

[
b1−b2φ2− clogK

(
L̄π −

1
3

L̄η

)]
+ ca1

a2

8t0
, (2.1)

φ
R
13 =

2φ4−φ2

2

[
b1−b2

(2φ4−φ2

2

)
− clog

2
3

KL̄η

]
+ ca2

a2

8t0
.

Note that φ R
12 and φ R

13 are functions of φ2 only, φ4 being held constant. They have common fit
parameters b1, b2 and clog, arising from NLO χPT. The chiral logs are L̄π = φ2 lnφ2 and L̄η =

φη lnφη , where φη ≡ (4φ4−3φ2)/3 and the fit parameters relate to LEC’s as

b1 =
1

2B0
√

8t0

[
1− 32

8t0 f 2
0
(2L6−L4)φ4

]
, b2 =

1
2B0
√

8t0

16
8t0 f 2

0
(2L8−L5), clog =

1
2B0
√

8t0
,

and
K =

1
16π28t0 f 2

πK
, fπK ≡

2
3

(
fK +

1
2

fπ

)
. (2.2)

The fit parameters ca1, ca2 arise from the parametrisation of the discretisation effects in our Sy-
manzik-improved setup. It is implied that the dominant discretisation error is mass-independent;
i.e. corrections of O(a2φ2) may be ignored. This is supported by work on Wilson χPT [12, 13]. In
some test-fits, where such a mass-dependent term was also allowed, it turned out to be small.

These chiral formulae can be combined to form the ratio of the two PCAC masses,

φ R
12

2φ R
13

=
φ2

2φ4−φ2

[
1+

b2

b1
φ4−

3b2

2b1
φ2−

clogK
b1

(
L̄π − L̄η

)]
+ ca

a2

8t0

(
1− 2φ2

2φ4−φ2

)
LO≈ φ2

2φ4−φ2

[
1+

b2

b1
φ4−

3b2

2b1
φ2−K

(
L̄π − L̄η

)]
+ ca

a2

8t0

(
1− 2φ2

2φ4−φ2

)
. (2.3)

The ratio has the advantage of cancelling the renormalisation constants. The form of the cutoff
effects has been tailored to satisfy the exact constraint

φ R
12

φ R
13

∣∣∣∣
ml=mh

= 1. (2.4)

Another combination to study is

4
φ R

12
2φ4−φ2

+
φ R

12
φ2

= 3b1 +2b2φ4 + clogK
(

L̄π − L̄η

)
+ c′a

a2

8t0
, (2.5)

as this will show how sensitive we are to the chiral logarithms.
The analysis is carried out using the library described in [15], and standard MINPACK rou-

tines are used for χ2 minimisation. Errors in abscissa variables – φ2, φ4 and K – are included in the
fit. The error analysis is carried out using the Gamma method approach and automatic differenti-
ation for error propagation (see [15] and references therein). This takes into account all existing
correlations in the data, and computes autocorrelation functions (including exponential tails) to
estimate the uncertainties correspondingly. Following [1], the values τexp used in the analysis are
those quoted in [3], namely

τexp = 14(3)
t0
a2 . (2.6)
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This is a very conservative estimate for our data.
Doing combined fits to various combinations of the ratio φ R

12/(2φ R
13), φ R

13, φ R
12 and eq. (2.5)

shows that our most stable fits are:

fit 1: combined fit of ratio φ R
12/(2φ R

13) and φ R
13,

fit 2: conbined fit of eq. (2.5) and φ R
13.

Our results indicate that χPT suffers at our highest pion masses, which are around 420 MeV.
Therefore we introduce a cut in the pion mass at mπ < 400 MeV and mπ < 300 MeV to test how
much the results change. We take the results from fit 2 with a cut at mπ < 400 MeV as our main
result, and use the spread of central values in these two sets of fits to estimate the systematics. The
results have been crosschecked by various independent analyses.

3. Results and outlook

Our preliminary results for the strange and u/d quark masses are

mRGI
s = 127.0(3.1)(3.2) MeV, mRGI

u/d = 4.70(15)(12) MeV. (3.1)

The first error includes statistics/fitting and the second error is systematic. Using 4-loop PT to
convert RGI masses to MS scheme at µ = 2 GeV and n f = 3 gives

mMS
s = 95.5(2.5)(2.4) MeV, mMS

u/d = 3.53(12)(9) MeV (3.2)

(the conversion factor is 1.330(13)). These results agree very well with the quark masses listed in
PDG [16], mMS

s = 95+9
−3 MeV and mMS

u/d = 3.5+0.5
−0.2 MeV. The agreement with other n f = 2+1 lattice

results is also good: FLAG review [17] gives the lattice averages as mMS
s = 92.0(2.1) MeV and

mMS
u/d = 3.373(80) MeV. Our result for the quark mass ratio is

ms

ml
= 27.0(1.0)(0.4), (3.3)

compared to the PDG value [16] ms/ml = 27.3(0.7) and the FLAG average [17] ms/ml = 27.43(31).
Our results are still preliminary, and we will address the full error budget in a forthcoming publi-
cation. The fairly large systematic uncertainties are due to the absence of very chiral ensembles in
this analysis, which could be improved on as further ensembles become available.

Acknowledgements: The authors wish to thank P. Fritzsch, S. Schaefer and T. Korzec for
their contributions and numerous useful discussions.
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