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Weak coupling limit of 2+1 SU(2) LGT and mass gap, LATTICE 2018 T. P. Sreeraj

1. Introduction

There had been various attempts [1] in the past to remove the redundant gauge degrees of
freedom by describing gauge theories in terms of gauge invariant Wilson loops. These attempts to
construct a complete set of gauge invariant Wilson loop operators as well as loop states are difficult
due to non local nature and overcompleteness of the set of all Wilson loops. In this paper, we will
describe a complete, local, gauge invariant formulation of SU(2) lattice gauge theory (LGT) on
what we call a ’point split lattice’[2].

2. Hamiltonian formulation of SU(2) lattice gauge theory

The basic variables of the Kogut Susskind formulation [4] of SU(2) LGT are the operator
valued 2× 2 SU(2) matrices Ui(~x) lying on the links starting from the site ~x along the i direction,
of a spatial square lattice and their conjugate left and right electric fields Ea

i (~x),E
a
ī (~x+ î). They

satisfy the following commutation relation:

[Ea
i (~x),Ui(~x)] =−

(
σa

2
Ui(~x)

)
;

[
Ea

ī (~x+ î),Ui(~x)
]
=

(
Ui(~x)

σa

2

)
(2.1)

σa are the Pauli matrices. Ea
i , Ea

ī satisfy the SU(2) algebra. The right electric field is defined as the
negative of the left electric field parallel transported along the link. I.e, Ea

ī (~x+ i) = Rab(U)Ea
i (~x),

where Rab(U) = 1
2 Tr
(
UσaU†σb

)
. Therefore,

Ea
i (~x)E

a
i (~x) = Ea

ī (~x+ î)Ea
ī (~x+ î) = E2(~x) link constraint (2.2)

The lattice electric fields are dimensionless and are related to the dimensionful continuum electric
fields as Econt ∼ a−d/2EL where d is the spacetime dimension and a is the lattice spacing, so that
the electric field components commute on continuum limit. The Hamiltonian is given by:

H = g2
∑
~x,i

Ea
i (~x)E

a
i (~x)+

2
g2a2 ∑

p

[
2−TrUp

]
(2.3)

In (2.3), p denotes plaquettes. The Hamiltonian along with the Gauss law constraint, G a(~x) =
2
∑

i=1

[
Ea

i (~x)+Ea
ī (~x)

]
= 0, completely describes the theory. G a(~x) is the generator of gauge transfor-

mations at site~x.

2.1 Prepotential formulation

It is convenient to reformulate SU(2) LGT in terms of harmonic oscillator doublets [5] (Schwinger
bosons) which tranform under the fundamental representation of the gauge group. Electric fields
and the link operator can be written in terms of Schwinger bosons as

Ea
i (~x)≡ a†

i,α(~x)
(

σa

2

)
αβ

ai,β (~x), Ea
ī (~x+ î)≡ a†

ī,α(~x+ î)
(

σa

2

)
αβ

aī,β (~x+ î).

(Ui)αβ
(~x) =

1√
N̂ +1

[
ã†

i,α(~x)a
†
ī,β (~x+ î)+ai,α(~x)ãī,β (~x+ î)

] 1√
N̂ +1

(2.4)
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Figure 1: (a) Schwinger bosons in the original square lattice. (b),(c),(d) denotes three different splitting
schemes at each vertex. Point splitting reduces a 4 vertex to two 3-vertices.

Above, a†
i,α(~x) and a†

ī,α(~x+ î) are the harmonic oscillator doublets at the left and right of the link

operator Ui(~x). ã†
α = εαγa†

γ and the number operator N̂ ≡ a†
i (~x) ·ai(~x) = a†

ī (~x+ î) ·aī(~x+ î) due to
the link constraint (2.2). The number of Schwinger bosons at the left end of a link equals that at the
right end. Schwinger bosons transform under gauge transformation Λ at any site as aα

Λ−→ Λαβ aβ .
Note that ã†

α transforms the same way as aα . a†
i (~x) · ã†

i′(~x); i 6= i′ is gauge invariant. There are
6 pairs of different Schwinger bosons at any site on a 2 dimensional square lattice. Therefore, a
gauge invariant basis can be constructed as:

|l12, l11̄, l12̄, l21̄, l22̄, l1̄2̄〉= (a†
1 · ã†

2)
l12 (a†

1 · ã†
1̄)

l11̄ (a†
1 · ã†

2̄)
l12̄ (a†

2 · ã†
1̄)

l21̄ (a†
2 · ã†

2̄)
l22̄ (a†

1̄ · ã
†
2̄)

l1̄2̄ |0〉 (2.5)

Above, |0〉 is the strong coupling vacuum. Ea|0〉 = a|0〉 = 0. However, not all such states are
independent due to the following relation1:(a†

1 · ã†
2)(a

†
1̄ · ã

†
2̄) = (a†

1 · ã†
1̄)(a

†
2 · ã†

2̄)+ (a†
1 · ã†

2̄)(a
†
2 · ã†

1̄)

which follows from εαβ ε
ᾱβ̄

= δαᾱδ
ββ̄

+δ
αβ̄

δβᾱ . In order to construct a complete basis, we modify
the lattice by a process we call ’splitting of the point’.
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Figure 2: (a). The ps-lattice obtained after splitting of point at each site. (b) Plaquette becomes an octagon
after point splitting. Action of TrUo increases ni/m on each link on the octagon by ±1.

3. Splitting of the point

In order to get a complete basis , we ’split’ each site into two and insert a new link in between
[2] thereby replacing each 4-vertex with two 3-vertices. This can be done in three different ways

1This is just the basic mandelstam relation connecting SU(2) Wilson loops recast in terms of Schwinger bosons.
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at each vertex as shown in figure 1(b),(c) and (d). In this paper, we choose the splitting scheme (d)
at each site. This process of modifying the lattice is called splitting of the point and the resulting
lattice is called a ps-lattice. Link operators and electric fields are introduced on the new link
along with Gauss law constraints on each 3-vertex. Equivalently, Schwinger bosons satisfying link
constraints are introduced at the ends of the new links. The Gauss law at one of the two new
vertices can be used to fix the link operator of the new link to 1. This gives back the original lattice.
Therefore, ps-lattice describes the same physics as the original lattice. At any 3-vertex, there are
3 prepotentials (see figure 2(b)) denoted as a†

i,α ,a
†
ī,α ,a

†
3,α where i = 1,2 according to whether the

vertex contains x-links or y-links. On every 3-vertex, (a†
i · ã†

ī ),(a
†
ī · ã

†
3),(a

†
3 · ã†

i ) are locally gauge
invariant and independent. So, a complete, orthonormal, gauge invariant local basis at a site is
given by:

|liī, lī3, l3i〉=
(a†

i · ã†
ī )

liī(a†
ī · ã

†
3)

lī3(a†
3 · ã†

i )
l3i√

(liī + li3 + lī3 +1)!(liī)!(l3i)!(lī3)!
|0〉 (3.1)

In (3.1), liī, lī3, l3i are positive integers. Above states can also be labelled by the eigenvalues of
the number operators N̂i = a†

i · ai, N̂2 = a†
ī · aī, N̂3 = a†

3 · a3. I.e, |liī, lī3, l3i〉 ≡ |ni,nī,m ≡ n3〉 where
ni = liī+ l3i,nī = liī+ lī3,m≡ n3 = li3+ lī3. The inverse relations are liī = ni+nī−n3, lī3 = nī+n3−
ni, l3i = n3 +ni−nī. Since, E2 = N̂

2 (
N̂
2 +1), number of prepotentials on a link is a measure of the

electric flux through the link. The ni,m quantum numbers of the links meeting at a 3 vertex satisfies
triangle inequalities. For eg, at a 3-vertex: |ni−nī| ≤m≤ ni+nī In other words, m(~x) is limited by
the value of ni(~x) which in turn can take values freely between 0 and ∞. Alternatively, liī, lī3, l3i at
a site can be varied independently. The physical state space can be described equivalently in terms
of (i) li j at each site and the link constraints on every link implying a collection of overlapping,
closed electric flux loops or (ii) ni and m on the links satisfying local triangle inequalities at each
3-vertex. This equivalence can be realised only on the ps-lattice where the coordination number of
any vertex is always three.

The Hamiltonian on the ps-lattice in the prepotential representation is given by

H = g2
∑
~x

N̂i(~x)
2

( N̂i(~x)
2

+1
)
+

2
g2a2 ∑

oct

[
2−TrUo

]
(3.2)

Above,~x denotes 3-vertices, i = 1,2 according as the 3-vertex under consideration and TrUo is the
product of the link operators in the octagon (see figure 2(b)) and is given by the Trace of product
of 8 P(i j) matrices associated with the 8 vertices in the octagon and is given by:

P̂(i j) =

 1√
N̂i(N̂ j+1)

(
a†

i · ã†
j

)
1√

N̂i(N̂ j+1)

(
a†

i ·a j

)
1√

(N̂i+2)(N̂ j+1)

(
ai ·a†

j

)
1√

(N̂i+2)(N̂ j+1)
(ãi ·a j)

 (3.3)

At each 3-vertex along the octagon, there are two links which lie on the octagon. These links are
labelled by i and j in (3.3). P̂(i j)11/P̂(i j)22 increases/decreases both ni,n j by 1, P̂(i j)12 increases
ni but decreases n j and P̂(i j)21 increases n j but decreases ni. TrUo has 28 terms. Each term changes
ni/m at the eight links of the octagon by ±1 thereby exhausting the 28 possible ways to do it.

In order to construct a gauge invariant path integral to study the dynamics, we define phase
operators [6] eiφ̂i ,eiχ̂ , conjugate to ni,m. For this, we first extend the Hilbert space by increasing

3
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the domain of ni,m to (−∞,∞). Phase operators are defined such that they satisfy the commutation
relations: [ni,eiφ̂i ] = eiφ̂i [m,eiχ̂ ] = eiχ̂ . eiφ̂i/e−iφ̂i ,eiχ̂/e−iχ̂ act as step operators on the number
states increasing/decreasing ni,m by 1. We then define an eigenbasis of the phase operator eiφ̂i ,eiχ̂ :
eiφ̂i |φ1,φ2,χ〉 = eiφi |φ1,φ2,χ〉 eiχ̂ |φ1,φ2,χ〉 = eiχ |φ1,φ2,χ〉 The gauge invariant path integral is
then constructed as the probability amplitude to go from the state |φ1,φ2,χ〉 to |φ̄1, φ̄2, χ̄〉 in time t
by the conventional time slicing method. The domain of ni,m is then restricted to positive values of
ni,m within the path integral to get back to the original Hilbert space. The Euclidean path integral
thereby constructed is given by :

Z =
∫

Dφ1Dφ2Dχ

′

∑
n1,n2,m

e
−∫ dt

(
g2

∑
~x

(
ni
2

[
ni
2 +1
])

+ 2
g2a2 ∑

oct

[
2−Tr{Poct}

]
+∑

~x

{
in1φ̇1+in2φ̇2+imχ̇

})
(3.4)

We associate a matrix S(ni,m,nī) to each vertex and a matrix Q(φi) to each link in the octagon.

S(ni,m,nī) =

√ (ni+nī+m+3)(ni−nī+m+1)
4(m+1)(ni+1)

√
(nī−ni+m+1)(nī+ni−m+1)

4(m+1)(ni+1)√
(nī−ni+m+1)(nī+ni−m+1)

4(m+1)(ni+1)

√
(ni+nī+m+3)(ni−nī+m+1)

4(m+1)(ni+1)

 ;Q(φi) =

(
eiφi 0
0 e−iφi

)
(3.5)

Poct in eqn. (3.4) is the ordered product of the S and Q matrices included within the octagon. In
(3.4), the summation is over positive n1,n2,m satisfying triangle inequality at each 3-vertex.

4. The weak coupling limit

We now make a useful ansatz to study the weak coupling limit by constructing a weak coupling
expansion. Since the magnetic term is strictly positive and its lowest value occurs when U(~x) reach
1, this in the gauge invariant configuration space leads to Poct → 1 and S→ 1. Furthermore, all
the integer fields ni,m are always positive and hence 〈ni〉 and 〈m〉 are non zero. If we assume
〈ni〉 = N and insist that S ∼ 1, we note that 〈m〉 = 2N and N is large with φi,χ → 0, as the only
solution. We rescale 2 φi,χ → 1

2 gaφi,
1
2 gaχ and make the substitution, ni ≡ N + ñi,m ≡ 2N + m̃.

TrPoct consists of 28 terms corresponding to all possible fluctuations generated by the plaquette
term along the octagon(see figure 2(b)). In each of the terms, the off diagonal terms come in pairs.
This is due to the link constraint (2.2). The off-diagonal terms of S are at least of the order of 1

2
√

N
.

Therefore, the terms can be classified according to the number of off diagonal terms occurring.
Such a classification corresponds to an expansion in 1

N . The leading term 1
N0 is the term which

does not contain any off diagonal terms and corresponds to the term which either increases(+) or
decreases(-) the field ni,m at every link along the octagon. Every other term consists of several flips
+→− or −→+ along the octagon and each flip brings in a 1

2
√

N
. Consistency demands that each

term have even number of flips. The second leading term has two flips and hence is of the order of
1

4N . The next term 1
N2 consists of four such flips. After a straight forward tedious calculation [2],

we get

TrPoct ≈ 2−
( 1

4N2 m̃2 +V (φ1,φ2,χ)
)

(4.1)

2This gives φ 2
i ,χ

2 the dimensions of energy and 1
2 factor is for later convenience.
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V (φ1,φ2,χ) =
g2a2

4

{[
(∆1
(
φ2−

1
2

∆2χ
)
−∆2

(
φ1 +

1
2

∆1χ)
)]2

+
1
N

[
16
[
(φ1 +

1
2

∆1χ)2 +(φ2−
1
2

∆2χ)2 +χ
2
]

−
[
∆1
(
φ2−

1
2

∆2χ
)
−∆2

(
φ1 +

1
2

∆1χ
)
+∆1∆2χ

]2
− (∆1∆2χ)2

]}
(4.2)

The path integral becomes:

Z =

π

g∫
− π

g

Dφ1Dφ2Dχ

∞

∑
ñ1=−N
ñ2=−N

M2

∑
m̃=−M1

e
−∫ dt ∑

sites

[
g2
2

(
ñ2

1+ñ2
2+2N2

)
+ 1

2g2a2N2 m̃2+iñi
1
2 agφ̇i+im̃ 1

2 agχ̇+ 1
2g2 V (φ1,φ2,χ)]

]

(4.3)

Above, M1 = min(ñ1 + ñ1̄, ñ2 + ñ2̄),M2 = max(2N−|ñ1− ñ1̄|,2N−|ñ2− ñ2̄|). This is due to the
fact that m̃ is limited by the triangle inequality. In the weak coupling limit, M1 ≈ 0,M2 ≈ 2N.
Therefore, triangle inequality becomes irrelevant upto the leading term in the weak coupling limit.

Using Euler-Maclaurin formula to convert the summation over ñ and m̃ to integration and
performing the integral, we get upto an irrelevant constant C:

Z =C
∫

Dφ1Dφ2Dχe−W [N,φi,φ̇i,χ,χ̇] (4.4)

W [N,φi, φ̇i,χ, χ̇] =
∫

dt ∑
sites

[
a2

4
(φ̇1

2
+ φ̇2

2
)+

g2a2

4
χ̇2

2/(g2a2N2)
+

1
2g2 V (φ1,φ2,χ)

]
(4.5)

We now make the following transformation,

φi =
1√
−∆2

(∆iη + εi jδ jψ)+
1
2

ε ji∆ jχ (4.6)

In (4.6), ∆2 is the lattice laplacian and δ j is the backward difference operator defined as ∆2 =

∑i(∆i−δi) ; δ j f (~x) = f (~x)− f (~x− ĵ). Ignoring constant terms, the path integral becomes:

Z =
∫

DψDηDχ e
−∫ dt ∑

sites

[
a2
4

(
η̇2+ψ̇2

)
+ 1

8 g4a4N2 χ̇2+ a2
4

(
1
4

(
(∆1 χ̇)2+(∆2 χ̇)2

)
+χ̇

1√
−∆2

[
(δ1∆1−δ2∆2)η̇+2δ1δ2ψ̇

])
+ 2

g2a2 V (ψ,η ,χ)

]
(4.7)

V (ψ,η ,χ) =
1
2

g2a2
{

1
4
(∆ψ)2 +

1
N

[
4(η2 +ψ

2 +χ
2)− (∆ψ)2−2(∆1∆2χ)2 +∆

2
χ

∆1∆2√
−∆2

χ

]}
(4.8)

Above, (∆ψ)2 ≡ (∆1ψ)2 +(∆2ψ)2. The continuum limit is now taken by making

16
N

= M2a2 (4.9)

where M is the mass in the continuum and a is the lattice constant. Consequently, the euclidean
inverse propagators in the energy-momentum space to the leading order are

ψ : p2
0 +M2 +~p2 +O(a2)

η : p2
0 +M2 +O(a4)

χ : #a2~p2 p2
0 +M2 +O(a4) (4.10)

Above, # denotes a real positive constant. Therefore, ψ is a relativistic particle with mass M and χ

do not propagate. η may propagate due to higher order corrections.
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5. Summary and Future directions

A complete gauge invariant electric basis of the Hilbert space can be constructed [3] on a
square lattice by solving the Gauss law at each site of the lattice. However, in such a description
dynamics is complicated and involves higher Wigner symbols. In order to simplify the dynamics,
we recast the theory in terms of Schwinger Bosons (prepotentials) which transform under the fun-
damental representation of the gauge group. But, the basis thus constructed by making singlets out
of the prepotentials at each site turns out to be over complete. In order to have a complete basis,
we construct a point split lattice. Point splitting enables us to analyze a theory of interacting closed
loops in terms of local quantum numbers satisfying triangle inequalities. Dynamics was studied by
constructing a phase space path integral over positive integers n1,n2,m and the continuous phases
φ1,φ2,χ . Such a path inegral can be used for numerical simulations. Alternatively, one could work
within the Hamiltonian formulation to study the dynamics by other methods like tensor networks,
or cold atom simulations.

On inclusion of fermions, the Gauss law at each site is modified. It leads to a modified point
splitting scheme as well as new singlets involving fermions and thereby a modified ps-basis. The
prepotential representation of SU(3) gauge theory is already available in the literature [5] and there
doesn’t seem to be any serious hindrance in the extension of the point splitting scheme to SU(3) and
higher dimensionsional lattices. The dispersion relations (4.10) which was deduced upto the low-
est order in weak coupling expansion seems to imply that the lowest excitation is a non-degenerate
scalar which is consistent with the existing literature [7]. Lorentz covariance as well as the interac-
tions in the higher orders need to be investigated.
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