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1. Introduction

The ϕ 4 theory is a scalar field theory which has only the self quartic interaction term, and it is
regarded as the simplest interacting model. Despite the simplicity, the theory plays important roles
in particle physics, and there are non trivial features surrounding the model. One of its important
features is the spontaneous Z2 symmetry breaking. The symmetry breaking is closely related to
the phase transition, and our aim in this report is to precisely analyze a critical phenomena of this
model.

This model displays the different behaviors depending on its dimension. In five dimensions or
higher, it goes to the free theory in the continuum limit, and this property, namely the triviality of the
ϕ 4 theory, is believed to hold also in four dimensions. By contrast, the two and three dimensional
ϕ 4 theory in the continuum limit has finite coupling constant, and many numerical calculations
have been done to determine the non-trivial coupling constant. In two dimensions many numerical
approaches have been reported, and recently precise computations have been developing using
celebrated algorithms such as cluster algorithm and the worm algorithm [1, 2, 3, 4]. From this
background, computation of the critical coupling can be regarded as a benchmark test for numerical
algorithms.

In this report we compute the dimensionless coupling using the tensor renormalization group
(TRG). The TRG is a coarse-graining procedure for space-time, and this feature is useful for taking
the thermodynamic limit. In short, the computational time of the TRG is in proportion to the
logarithm of space-time volume. This is a big advantage compared to Monte Carlo simulations,
whose computational time is proportional to the space-time volume. Taking this advantage we
explore the continuum limit of the theory and try to precisely determine the value of the critical
coupling.

This report is organized as follows. We first present the definition of the model and a tensor
network representation for the target quantity in sec. 2. In sec. 3, we show the numerical results
along with the extrapolation procedure to the continuum limit. Section 4 is devoted to summary
and discussion.

2. Two dimensional lattice ϕ 4 theory and its tensor network formulation

The action of the ϕ 4 theory in two dimensions is defined as

Scont. =
∫

d2x
{

1
2
(∂νϕ)2 +

µ2
0

2
ϕ 2 +

λ
4

ϕ 4
}

(2.1)

with the bare mass µ0 and the bare coupling λ . ϕ denotes one-component real scalar field: ϕ ∈ R.
This model is obviously invariant under the Z2 transformation (ϕ →−ϕ ); however, this symmetry
may be dynamically broken in the context of quantum theory. Then the expectation value of the
scalar field is regarded as an order parameter; ⟨ϕ⟩= 0 corresponds to the symmetric phase, and if
it takes a nonzero value, the system is in the symmetry broken phase.

As a non-perturbative method, the lattice formulation is useful to study such dynamics. Thus,
from here let us work on the square lattice. Since µ2

0 and λ have positive mass dimension, the
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dimensionless form of the parameters are introduced as

µ̂2
0 = a2µ2

0 , λ̂ = a2λ (2.2)

with the lattice spacing a. In the following we suppress the hat for simplicity; otherwise one can
think that the lattice units a = 1 is assumed. After the preparation, the two dimensional lattice
action is written as

Sh = ∑
n

{
1
2

2

∑
ν=1

(ϕn+ν̂ −ϕn)
2 +

µ2
0

2
ϕ 2

n +
λ
4

ϕ 4
n −hϕn

}
, (2.3)

where n denotes the coordinate in L×L space-time lattice and ν̂ denotes the unit vector along the
ν-axis. Note that in eq.(2.3), the external field h is introduced though it is absent in the continuum
version in eq. (2.1). As will seen, the external field plays some roles to extract a non-zero value of
the expectation value of the scalar field in the thermodynamic limit.

Our final goal in this report is to evaluate the dimensionless critical coupling of the ϕ 4 theory.
For that purpose, we need to calculate physical quantities. Here we introduce the tensor network
representation of the partition function

Z =

(
∏

n

∫
dϕn

)
e−Sh , (2.4)

where n in the product runs all lattice sites, following our previous work [5].
To get straight to the point, we discretize the scalar field using K nodes to construct the tensor

network formulation 1, and the partition function is expressed as a product of tensors

Z (K) =

(
∏

n

D

∑
xn=1

D

∑
tn=1

)
∏
m

T (K)xmtmxm−1̂tm−2̂
, (2.5)

where D denotes the bond dimension of the four rank tensor T (K) although the detailed definition
of T (K) is not discussed in this report.

Now the value of Z (K) can be computed by taking the summation in eq. (2.5). However,
it is impossible to carry out the contraction of tensor indices in a large space-time extent. In
such a circumstance, it is useful to use a coarse-graining of the tensor network, e.g. the tensor
renormalization group algorithm proposed by Levin and Nave [6]. In this study we use the simplest
version of TRG though some variations have been developed so far. A key ingredient of the TRG
algorithm is using the singular value decomposition (SVD) to reduce the degrees of freedom. In
this report, we take the truncation order of the SVD to be equivalent to that of the initial tensor in
eq. (2.5), the bond dimension D.

As shown in next section, our target quantity is the expectation value of the scalar field defined
by

⟨ϕñ⟩=
Z1

Z
(2.6)

1The detail procedure is given in ref. [5], and the systematic errors from discretization of scalar fields are also
discussed there.
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for a lattice site ñ. Because of the translation invariance, ⟨ϕñ⟩ takes the same value for any site ñ;
thus we simply write ⟨ϕ⟩(= ⟨ϕñ⟩) in the following. The numerator in eq.(2.6) is defined by

Z1 =

(
∏

n

∫
dϕn

)
ϕñe−Sh , (2.7)

and its tensor network representation can be obtained in a similar way to the partition function
although the detail is skipped here.

3. Numerical results

In this section, we present our results of the dimensionless critical coupling. We present nu-
merical results of individual key steps: the thermodynamic limit, extracting the susceptibility, a
determination of the critical mass, and taking the continuum limit of the dimensionless critical
coupling. In the following we consider a system where the periodic boundary condition is imposed
for all directions, and we fix the number of discrete points for scalar fields K as 256.

3.1 Thermodynamic limit and extraction of susceptibility

In fig. 1 we show ⟨ϕ⟩/h as a function of L for several values of h with µ2
0 = −0.1006174,

λ = 0.05, D= 32. From the figure, one sees that the ratio becomes a constant in the extremely large
volume region L ≥ 106; thus such region can be effectively considered as in the thermodynamic
limit.

Figure 2 shows h-dependence of ⟨ϕ⟩/h in the thermodynamic limit for the same parameter set
(µ2

0 , λ , and D) given above. One can see that for sufficiently small h ≤ 10−11 the ratio behaves
as a constant; thus the susceptibility χ can be obtained by using the relation ⟨ϕ⟩ ≈ χ ·h. Actually
the values of ⟨ϕ⟩/h in the range h ∈

[
10−12,10−11

]
have a small fluctuation that is hard to see at

the scale of the figure. Thus the obtained value of χ has an error estimated by using the amplitude
of the fluctuation 2. Although here we show the plots only for a particular choice of parameters
(µ2

0 =−0.1006174, λ = 0.05, and D= 32), for the other parameter sets, we set up a proper range of
the volume and the external field as well. Our data of the susceptibility presented in the following
are in the thermodynamic limit at the zero external field.

3.2 Critical coupling

Figure 3 shows the deformed susceptibility as a function of µ2
0 at λ = 0.05 and D = 32. The

critical mass is determined from the zero point of the fitting function

χ−1/1.75 ∝
∣∣µ2

0,c −µ2
0
∣∣γ/1.75

(3.1)

with the fitting parameter, the critical (bare) mass square µ2
0,c. The ϕ 4 theory is believed to belong to

the two dimensional Ising universality class, and the exact value of the critical exponent is known as
γIsing = 1.75; then we here fix the exponent in eq. (3.1) as γ = γIsing to fit the data. For λ = 0.05 and
D = 32 we obtain µ2

0,c =−0.1006180444(70) with χ2/d.o.f. ≈ 0.0072, and this shows that fixing

2The error is very small compared to a fluctuation originated from D-dependence and almost does not affect on the
following results.
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Figure 1: Thermodynamic limit of ⟨ϕ⟩/h for h ∈[
10−12,10−6] at µ2

0 = −0.1006174, λ = 0.05, and D =

32.

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

1e+07

1e+08

1e+09

1e+10

1e-12 1e-10 1e-08 1e-06 1e-04 1e-02

<
φ>

/h

h

Figure 2: ⟨ϕ⟩/h as a function of h for µ2
0 =−0.1006174,

λ = 0.05, and D = 32 in the thermodynamic limit. The
ratio at h → 0 gives the susceptibility.

γ = γIsing is reasonable. By repeating the same procedure for 0.005 ≤ λ ≤ 0.1 and 16 ≤ D ≤ 64,
we obtain critical masses, which is used in following analyses.

Figure 4 shows the bond dimension dependence of the dimensionless critical coupling λ/µ2
c at

λ = 0.05, where µ2
c denotes the renormalized mass square 3. In the large D region, λ/µ2

c exhibits
an oscillating behavior. We use the fluctuation to estimate the systematic error of λ/µ2

c as shown in
fig. 4; half of the difference between the maximum and the minimum value of λ/µ2

c in the shared
area is adopted as the error. As a central value, we simply quote an average between the maximum
and minimum values. We do the same procedure for the other values of λ .
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Figure 3: The deformed susceptibility as a function of
µ2

0 at λ = 0.05 and D = 32. µ2
0,c = −0.1006180444(70)

is obtained by a linear extrapolation with χ2/d.o.f. ≈
0.0072.

Figure 4: D-dependence of λ/µ2
c at λ = 0.05. The er-

ror estimated from the fluctuation due to finite D is also
shown as the colored band.

3Since the theory contains a single divergent diagram: the one-loop self energy, one has to perform the renormal-
ization for the mass parameter. The coupling constant λ is free of the renormalization since there is no corresponding
divergent diagram in the two dimensional scalar theory.
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3.3 Continuum limit

Finally, by combining the results at all λ values, let us take the continuum limit (λ → 0)
of the dimensionless critical coupling. Figure 5 shows a comparison among the recent Monte
Carlo results and ours in the small λ region. To get the continuum value of the critical coupling[
λ/µ2

c
]

cont., we simply perform a linear extrapolation (χ2/d.o.f. ≈ 0.026). Our final result is given
by [

λ
µ2

c

]
cont.

= 10.913(56). (3.2)

Although the smallest value of λ = 0.005 is firstly reached by our current work, the error bar is
relatively larger compared with the latest Monte Carlo result around λ ≈ 0.01. Note that around
λ = 0.0312 there are four data points of independent papers; thus one can roughly compare their
values. As a result, the values of Schaich and Loinaz [1], Bronzin et al. [4], and ours are roughly
consistent with each other while that of Bosetti et al. [3] is relatively far away from the three results.
Table 1 compiles the dimensionless critical coupling of the previous Monte Carlo works together
with our work.

10.4

10.6

10.8

11

11.2

11.4

11.6

 0  0.02  0.04  0.06  0.08  0.1

λ/
µ c

2

λ

Schaich and Loinaz: cluster (2009)
Wozar and Wipf: with SLAC derivative (2012)
Bosetti et al.: worm (2015)
Bronzin et al.: worm with gradient flow (2018)
This work

Figure 5: Comparison of the continuum extrapolation for λ/µ2
c among the previous works (Schaich and

Loinaz [1], Wozar and Wipf [2], Bosetti et al. [3], and Bronzin et al. [4]) and ours in the range λ ≤ 0.1.
Square symbols at λ = 0 (horizontally shifted for the visibility) denote the continuum results of each method.
Note that Wozar and Wipf used the SLAC derivative for scalar fields, so at non-zero λ one cannot compare
their result with others.

4. Summary and outlook

In this report, by using the TRG algorithm together with the new tensor network formulation,
we evaluate the dimensionless critical coupling of the two dimensional ϕ 4 theory and carry out
its continuum extrapolation. Our continuum value is roughly consistent with the previous results.
Although the result of the tensor network method does not have statistical errors, our final result
has relatively larger systematic error due to the finite bond dimension. To reduce the error, one
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Method Result Year and Reference

TRG with GH quadrature 10.913(56) 2018, this work
MC worm with gradient flow 11.058(4) 2018, [4]
MC worm 11.15(6)(3) 2015, [3]
MC with SLAC derivative 10.92(13) 2012, [2]
MC cluster 10.80.1

0.05 2009, [1]

Table 1: The continuum results of the dimensionless critical coupling by previous Monte Carlo
works and ours.

needs to increase the bond dimension, but it requires more computational cost and memory usage.
Moreover, it is known that around the critical point, the TRG algorithm suffers from the growth of
the systematic errors. In such a situation, however, as an alternative coarse-graining procedure, the
tensor network renormalization (TNR) [7] and loop-TNR [8] may be useful to obtain more precise
results. These methods, in principle, can be used in any model irrespective of the details of fields as
long as the system is defined on the square lattice. Therefore in future it is interesting to apply these
methods to the ϕ 4 theory, and we expect that the accuracy of the dimensionless critical coupling
will be more improved. We hope that such study will enhance the value of the tensor network
method.
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