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We explore new representations for lattice gauge theories with fermions, where the space-time
lattice is divided into dynamically fluctuating regions, inside which different types of degrees
of freedom are used in the path integral. The first kind of regions is a union of so-called bags,
in which the dynamics is described by the free propagation of composite degrees of freedom of
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1. Introduction

In recent years an important development in lattice field theories was the construction of worldline
and worldsheet representations (see, e.g., the reviews at the annual lattice conferences [1]). Often
the motivation are lattice field theories at finite density where in some cases the complex action
problem may be overcome by a suitable worldline/worldsheet representation. For systems with
fermions, such as QCD, the situation is more complicated due to the Grassmann nature of the
fermions and additional signs from the Clifford algebra. However, for strong coupling worldline
representations have been studied since the early days of lattice field theory [2]. This idea has
been revisited recently and interesting results were obtained for strong coupling QCD [3, 4]. Also
beyond strong coupling suggestions for a fully dualized version of lattice QCD [5] were presented.

Also for purely fermionic lattice field theories worldline representations play an important
role. In some cases it is possible to develop a representation in terms of so-called fermion bags.
Fermion bags are space-time domains on the lattice where the dynamics is essentially given by free
fermions which inside the bag can be described by a fermion determinant. In between the bags
the fermionic Grassmann integral is saturated with the interaction terms [6]. For many interesting
systems fermion bag representations were applied as a powerful tool for numerical simulations [7].

In this contribution we discuss further developments based on [4], where a so-called baryon
bag representation was constructed for strong coupling lattice QCD. Although the technical aspects
of a simulation with baryon bags are similar to the fermion bag concept, the underlying physical
picture is different: Inside a baryon bag three strongly coupled quarks propagate jointly as a baryon
which is described as a free composite fermion (whereas inside a conventional fermion bag the fun-
damental fermions of the theory propagate as free fermions). The physics inside the baryon bag
is described by a free fermion determinant, while outside the baryon bags the dynamics is gov-
erned by quark and diquark monomer and dimer terms. Here we report on developments towards
an efficient simulation of the monomers and dimers and also discuss the case of strong coupling
SU(2), where the degrees of freedom inside the bags are nilpotent bosons, that are described by bag
permanents instead of the bag determinants that appear for fermionic effective degrees of freedom.

2. Factorization of strong coupling QCD

We begin our presentation with a brief summary of the baryon bag formulation [4] of strong cou-
pling QCD. We use one flavor of staggered fermions, where the action is given by

SF
[
ψ,ψ,U

]
= ∑

x

(
2mψxψx + ∑

ν

γx,ν

[
ψxUx,νψx+ν̂ −ψx+ν̂U†

x,νψx

])
. (2.1)

ψx and ψx are Grassmann variables with 3 color components and by γx,ν we denote the staggered
sign factors γx,1 = 1, γx,2 = (−1)x1 , γx,3 = (−1)x1+x2 and γx,4 = (−1)x1+x2+x3 . The gauge fields are
coupled via the link variables Ux,ν ∈ SU(3). At strong coupling the partition sum is given by

Z =
∫

D[ψ,ψ]
∫

D[U ]eSF

[
ψ,ψ,U

]
=
∫

D[ψ,ψ]∏
x

e2mψxψx

∫
D[U ] ∏

x,ν
eγx,ν ψxUx,ν ψx+ν̂ e−γx,ν ψx+ν̂U†

x,ν ψx ,

(2.2)
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where in the second step we have written the sums in the action as products of the individual
Boltzmann factors. The exponentials of the nearest neighbor terms can be expanded into power
series that terminate after the third order, since for gauge group SU(3) we have only 3 independent
(pairs of) Grassmann variables per site (for notational convenience we here drop the space-time
indices and use matrix-vector notation for the color indices)

eγ ψ Uψ = 1+ γ ψUψ +
(ψUψ)2

2!
+

(γ ψUψ)3

3!
=

[
1+ γ

(ψUψ)3

3!

][
1+ γ ψUψ +

(ψUψ)2

2!

]
.

(2.3)
In the second step we have pulled out the highest monomial and the product of the two square
brackets reproduces the previous expression due to nilpotency. It is easy to see that the 3rd order
term is independent of the gauge link U : (ψUψ)3 = (ψaUabψb)

3 = 3! ψ3 ψ2 ψ1 ψ1 ψ2 ψ3 detU ≡
3! BB, where in the last step we have used detU = 1 and introduced the baryon fields Bx, Bx defined
as Bx = ψx,1 ψx,2 ψx,3, Bx = ψx,3 ψx,2 ψx,1. Thus we obtain

eγ ψ Uψ = eγBB
2

∑
d=0

(
γ ψUψ

)d

d!
, e−γ ψ U†ψ = e−γBB

2

∑
d=0

(
− γ ψU†ψ

)d

d!
, e2mψψ = e(2m)3BB

2

∑
s=0

(
2mψψ

)s

s!
,

(2.4)
where we have repeated the steps for the forward hopping term also for the backward hopping
and mass terms. We stress again, that all contributions that we have expressed in terms of the
baryon fields Bx and Bx are independent of the gauge fields. Using the results (2.4) we find for the
partition sum Z =

∫
D[ψ,ψ]eSB[B,B] W [ψ,ψ]. We have factorized the contributions of the baryons

and organized them in the baryon action (we re-inserted all space-time indices)

SB
[

B,B
]
= ∑

x

(
2M BxBx + ∑

ν

γx,ν

[
Bx Bx+ν̂ − Bx+ν̂Bx

])
, (2.5)

which has the form of a free staggered action for the baryon fields Bx and Bx with mass M = 4m3.

3. Strong coupling integrals

The remaining, non-baryonic terms depend on the gauge fields and we have collected them in

W [ψ,ψ] = ∏
x

∑
sx

(
2mψxψx

)sx

sx! ∏
x,ν

∑
dx,ν ,dx,ν

(γx,ν)
dx,ν+dx,ν

dx,ν ! dx,ν !

∫
D[U ]

(
ψxUx,νψx+ν̂

)dx,ν
(
−ψx+ν̂U†

x,νψx

)dx,ν
.

(3.1)
The integrals over the gauge links project to color singlet combinations. These are obtained either
by the trivial choice dx,ν = dx,ν = 0, the quark dimer term dx,ν = dx,ν = 1 or the diaquark dimer
term dx,ν = dx,ν = 2. The corresponding integrals are well known, see, e.g., [8], and we find [4]

Z =
∫

D[ψ,ψ]e SB[B,B] ∏
x

2

∑
sx=0

(
2mψxψx

)sx

sx! ∏
x,ν

2

∑
dx,ν=0

(3−dx,ν)!
6dx,ν !

(
ψxψx ψx+ν̂ψx+ν̂

)dx,ν. (3.2)

The final step is to saturate the Grassmann integral. The first possibility is to saturate the Grassmann
integral using the baryon terms. Since the baryon fields Bx and Bx contain all three colors, the
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baryon terms completely saturate the Grassmann integral on the sites where we use them. The fact
that there are no remaining quark link terms at strong coupling also implies that the regions where
we saturate the Grassmann integral with the baryon terms do not mix with the other sites where
we use the terms from W [ψ,ψ]. We now refer to a connected area of space-time where we use the
baryon terms for saturating the Grassmann integral as a baryon bag Bi. By B we denote the union
of all bags. Since the Bx and Bx inherit the Grassmann properties of the underlying quark fields [4],
the contribution of the baryons inside the bag Bi is given by the determinant detD(i) of the free
staggered Dirac operator D(i) from the baryon action (2.5), but restricted to the sites of Bi.

In the complementary domain B we saturate the Grassmann integral by combining quark
monomer (sx = 1) and diquark monomer terms (sx = 2) on a single site, with quark dimers (dx,ν = 1)
and diquark dimers (dx,ν = 2) on links. Note that since the Grassmann variables are already in the
correct order no negative signs remain. We summarize the baryon bag form as [4],

Z = ∑
{B}

∏
i

det D(i)
∑

{s,d ‖B}
(2m)∑x sx

(
1
3

)
∑x,ν

[
δdx,ν ,1+δdx,ν ,2

]
. (3.3)

The sum runs over all possible ways of decomposing the lattice into baryon bags Bi and a com-
plementary domain B. For each bag Bi we collect as a factor the determinant detD(i) of the Dirac
operator D(i) in (2.5) restricted to Bi. In the complementary domain we saturate the Grassmann in-
tegral with with quark monomers (sx = 1), diquark monomers (sx = 2), quark dimers (dx,ν = 1) and
diquark dimers (dx,ν = 2), and by the second sum we denote the sum over all admissible monomer
and dimer configurations compatible with a given complementary domain B. Quark and diquark
monomers come with a factor (2m)sx , quark and diquark dimers both with a factor of 1/3.

4. Towards an efficient update strategy

We begin the discussion of possible update strategies for a numerical simulation of the baryon
bag representation with the complementary domain B. Here we have to occupy each site of the
lattice with quark and diquark monomers or with the endpoints of quark and diquark dimers. More
specifically each site of the lattice has three possible colors where we can attach the corresponding
elements. In order to illustrate this, in Fig. 1 we show a chain of neighboring sites x1, x2 .... x6. For
every site we use three layers that correspond to the three colors. A quark monomer is represented
by a single square and a diquark monomer by a rectangle that covers two layers. Both, quark and
diquark monomers live on a single site and we placed diquark monomers at the sites x1, x2 and x3,
while quark monomers are placed at x4 and x6. Dimer terms live on the links and we represent a
quark dimer by a single fat line, while diquark dimers are represented by two touching lines on the
same link. On the links between x1 and x2, x3 and x4, as well as x4 and x5 we have placed quark
dimers, while on the link between x5 and x6 we have placed a diquark dimer. Obviously, in our
example at every site we have all three color components saturated either by monomer terms or
endpoints of dimer terms. We stress that in Fig. 1 the sites simply form a chain, but of course at
some site x on a d-dimensional lattice one has to take into account all 2d links attached to that site.

In the partition function (3.3) we have to sum over all monomer and dimer assignments that are
compatible with a given structure of the complementary domain B. We will base this summation

3
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Figure 1: Examples for saturation in the complementary domain.

on our monomer variables sx = 0,1,2 on the sites and the dimer variables dx,ν = 0,1,2 based on
the links. Since at each site x every color has to be occupied by either a monomer or the endpoint
of a dimer term, we find the following simple constraint,

sx + ∑
ν

[dx,ν + dx−ν̂ ,ν ] = 3 ∀ x ∈B. (4.1)

It turns out that for a given set of fixed monomer variables sx and dimer variables dx,ν one can
sum over the multiplicities for the different configurations of monomer and dimer arrangements
that are compatible with the fixed values of the sx and dx,ν . We discuss this for the examples in
Fig. 1: At site x1 we can choose to place the endpoint of the quark dimer at any of the three colors
and the remaining two colors are saturated with the diquark monomer. Thus at the site x1 we
find a degeneracy factor of F(x1) = 3. The same analysis holds for the sites x2 and x3 that both
have a degeneracy factor of F(x2) = F(x3) = 3. The situation is different for x4: There we have
3 choices for placing the quark monomer and another 2 choices for placing the endpoints of the
two quark dimers, giving a degeneracy of F(x4) = 6. For x5 and x6 we again find a degeneracy
of F(x5) = F(x6) = 3, because we have 3 choices for placing the endpoint of the quark dimer
at x5, respectively the quark monomer at x6 and the remaining two colors are saturated by the
two endpoints of the diquark dimer. Thus whenever a diquark element is attached at a site x, the
multiplicity is 3, while it is 6 when only quark elements are used for the saturation at x. Thus we
obtain F(x) = 6−3δsx,2−3∑ν

[
δdx,ν ,2 + δdx−ν̂ ,ν ,2

]
and rewrite the partition sum (3.3) into the form

Z = ∑
{B}

∏
i

det D(i)
∑

{s,d∈B}

[
∏
x∈B

δ

(
sx +∑

ν

[dx,ν + dx−ν̂ ,ν ]−3
)

F(x)

]
(2m)∑x sx

(
1
3

)
∑x,ν

[
δdx,ν ,1+δdx,ν ,2

]
.

(4.2)
The first sum is again the sum over all bag configurations and we collect the factors from the
corresponding bag determinants. By the second sum ∑{s,d∈B} ≡∏x∈B ∑

2
sx=0 ∏(x,ν)∈B ∑

2
dx,ν=0 we

denote the sum over all monomer and dimer configurations in the complementary domain. These
are subject to the constraints (4.1) at all sites x which we write as a product of Kronecker deltas,
here denoted as δ (n)≡ δn,0. The admissible configurations come with degeneracy factors F(x) at
all sites x in the complementary domain, and the weights from the quark mass and the factors 1/3
for quark and diquark dimers. In the form (4.2) the baryon bag representation is better accessible
to numerical simulations and we have started to implement the first numerical tests.

5. The case of strong coupling SU(2)

We conclude our discussion of bag representations for effective strong coupling degrees of freedom
with the case of gauge group SU(2). In this case the effective degrees of freedom are diquarks which
are bosons. Thus we expect a different form of the contributions from the bags: 1) The action for
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the bag terms should be bosonic in nature, i.e., we expect to find a Helmholtz operator for the
kernel. 2) The bag determinant, which is fully anti-symmetric, should be replaced by a completely
symmetric expression. Since the diquarks are nilpotent, we will see that the bag determinant is
replaced by a so-called permanent which like the determinant is a sum over all permutations, but
the sign of the permutations is omitted.

We start our discussion of SU(2) with the expansion of the nearest neighbor Boltzmann factors
as in (2.3) and (2.4). Since for SU(2) we only have two colors, the power series for the Boltzmann
factor terminates after the quadratic term. As before, this highest order term is independent of the
gauge link, (ψUψ)2 = 2! ψ2 ψ1 ψ1 ψ2 detU ≡ 2! BB, where now the baryonic degrees of freedom
are diquarks, i.e., Bx = ψx,1 ψx,2, Bx = ψx,2 ψx,1. We find for the nearest neighbor Boltzmann factor

e γx,ν ψx Ux,ν ψx+ν̂ = eBx Bx+ν̂

1

∑
dx,ν=0

γx,ν
(
ψxUx,νψx+ν̂

)dx,ν . (5.1)

In the exponential on the rhs. the staggered sign γx,ν has disappeared since it is squared for diquarks.
The baryonic/diquark fields Bx and Bx are now made of an even number of Grassmann variables,
such that they commute. Combining the nearest neighbor terms (5.1) with the corresponding back-
ward hopping and the mass term we find a bosonic action for the diquark fields

SB
[

B,B
]
= ∑

x

(
4m2 BxBx + ∑

ν

[
Bx Bx+ν̂ + Bx+ν̂Bx

])
= ∑

x,y
Bx Hx,y Bx . (5.2)

In the last step we have defined the kernel Hx,y of the action, which is the sum of a constant term
and the discretized Laplace operator, i.e., a discretized Helmholtz operator. Again we write the
partition sum as Z =

∫
D[ψ,ψ]eSB[B,B] W [ψ,ψ], where the weight for the non-baryonic terms is

W [ψ,ψ] = ∏
x

1

∑
sx=0

(
2mψxψx

)sx

∏
x,ν

1

∑
dx,µ=0

∫
D[U ]

(
−ψxUx,νψx+ν̂ ψx+ν̂U†

x,νψx

)dx,ν
. (5.3)

We have already used the fact that only the same powers of Ux,ν and U†
x,ν give rise to a singlet

and thus a non-trivial strong coupling integral. As a consequence we have the following non-
trivial contributions from the non-baryonic terms: Quark monomers for sx = 1 and quark dimers
for dx,ν = 1 (here the corresponding SU(2) integral [8] gives a factor of 1/2).

Again we can decompose the lattice into bags Bi where we use the baryonic/diquark terms to
saturate the Grassmann integral and a complementary domain where we saturate the Grassmann
integral with quark monomers and dimers. Note that for SU(2) no diquark terms appear in the
complimentary domain – they are the degrees of freedom used inside the bags. Before we can
write down the final expression for the partition sum we need to clarify the form of the contribution
inside the bags. We already remarked, that for strong coupling SU(2) the baryon/diquark fields
Bx and Bx commute since they are composed of pairs of Grassmann variables. However, they are
still nilpotent, such that we obtain the same algebraic form for the integral over the degrees of
freedom in the bag, but without the signs that were generated when commuting the SU(3) strong
coupling fields. Thus instead of the bag determinant we obtain a so-called permament perm H(i),
where H(i) is the Helmholtz operator defined in (5.2) but restricted to the bag Bi. The definition
of the permanent perm M of a N×N matrix M reads perm M = ∑π(N) ∏

N
k=1 Mk,πk where the sum

5
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runs over all permutations of N numbers. The final result for the bag representation for the strong
coupling SU(2) case thus reads (the degeneracy factor is always F(x) = 2 ∀x ∈B)

Z = ∑
{B}

∏
i

perm H(i)
∑

{s,d∈B}

[
∏
x∈B

δ

(
sx +∑

ν

[dx,ν + dx−ν̂ ,ν ]−2
)

F(x)

]
(2m)∑x sx

(
1
2

)
∑x,ν dx,ν

.

(5.4)
This example of a case with effective bosonic bag degrees of freedom concludes our presentation
of bag techniques for strong coupling gauge fields with fermions.

References

[1] S. Chandrasekharan, PoS LATTICE 2008 (2008) 003 [arXiv:0810.2419]. P. de Forcrand, PoS LAT
2009 (2009) 010 [arXiv:1005.0539]. U. Wolff, PoS LATTICE 2010 (2010) 020 [arXiv:1009.0657].
C. Gattringer, PoS LATTICE 2013 (2013) 002 [arXiv:1401.7788].

[2] P. Rossi, U. Wolff, Nucl. Phys. B 248 (1984) 105. F. Karsch, K. Mütter, Nucl. Phys. B 313 (1989) 541.

[3] D.H. Adams, S. Chandrasekharan, Nucl. Phys. B 662, 220 (2003) [hep-lat/0303003].
S. Chandrasekharan, F.J. Jiang, Phys. Rev. D 68, 091501 (2003) [hep-lat/0309025].
S. Chandrasekharan, C.G. Strouthos, Phys. Rev. D 69 (2004) 091502 [hep-lat/0401002]. P. de
Forcrand, M. Fromm, Phys. Rev. Lett. 104, 112005 (2010) [arXiv:0907.1915]. W. Unger, P. de
Forcrand, J. Phys. G 38, 124190 (2011) [arXiv:1107.1553]. P. de Forcrand, S. Kim, W. Unger, JHEP
1302, 051 (2013) [arXiv:1208.2148]. P. de Forcrand et al, Phys. Rev. Lett. 113, 152002 (2014)
[arXiv:1406.4397]. W. Unger, PoS LATTICE 2014 (2014) 192 [arXiv:1411.4493]. J. Kim, W. Unger,
PoS LATTICE 2016, 035 (2016) [arXiv:1611.09120]. P. de Forcrand, P. Romatschke, W. Unger,
H. Vairinhos, PoS LATTICE 2016, 086 (2017) [arXiv:1701.08324]. P. de Forcrand, W. Unger,
H. Vairinhos, Phys. Rev. D 97, 034512 (2018) [arXiv:1710.00611].

[4] C. Gattringer, Phys. Rev. D 97, 074506 (2018) [arXiv:1802.09417].

[5] G. Gagliardi, J. Kim, W. Unger, EPJ Web Conf. 175 (2018) 07047 [arXiv:1710.07564]. C. Gattringer,
D. Göschl, C. Marchis, EPJ Web Conf. 175, 11007 (2018) [arXiv:1710.08745 ]. O. Borisenko,
V. Chelnokov, S. Voloshyn, EPJ Web Conf. 175 (2018) 11021 [arXiv:1712.03064]. C. Marchis,
C. Gattringer, Phys. Rev. D 97 (2018) 034508 [arXiv:1712.07546]; Nucl. Phys. B 916 (2017) 627
[arXiv:1609.00124]; PoS LATTICE 2016, 034 (2016) [arXiv:1611.01022]. C. Marchis, “Abelian
color cycle and abelian color flux dualization methods for non-abelian lattice field theories,” PhD
thesis, University of Graz 2018, arXiv:1809.02415. G. Gagliardi, W. Unger, arXiv:1811.02817.

[6] S. Chandrasekharan, Phys. Rev. D 82, 025007 (2010) [arXiv:0910.5736]. S. Chandrasekharan, Eur.
Phys. J. A 49 (2013) 90 [arXiv:1304.4900].

[7] S. Chandrasekharan, A. Li, JHEP 1101, 018 (2011) [arXiv:1008.5146]; Phys. Rev. Lett. 108, 140404
(2012) [arXiv:1111.7204]; Phys. Rev. D 85, 091502 (2012) [arXiv:1202.6572]. S. Chandrasekharan,
Phys. Rev. D 86, 021701 (2012) [arXiv:1205.0084]. S. Chandrasekharan, A. Li, Phys. Rev. D 88,
021701 (2013) [arXiv:1304.7761]. E.F. Huffman, S. Chandrasekharan, Phys. Rev. B 89, 111101
(2014) [arXiv:1311.0034]. V. Ayyar, S. Chandrasekharan, Phys. Rev. D 91, 065035 (2015)
[arXiv:1410.6474]; Phys. Rev. D 93, 081701 (2016) [arXiv:1511.09071]; JHEP 1610, 058 (2016)
[arXiv:1606.06312]. E. Huffman, S. Chandrasekharan, Phys. Rev. D 96, 114502 (2017)
[arXiv:1709.03578]. V. Ayyar, S. Chandrasekharan, J. Rantaharju, Phys. Rev. D 97 (2018) 054501
[arXiv:1711.07898].

[8] M. Creutz, J. Math. Phys. 19, 2043 (1978).

6


