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1. Introduction and Motivation

The infrared behaviour of Green’s functions of Yang-Mills theory has been the subject of

many studies in recent years. The relevance of such studies is rooted in the information on the non-

perturbative phenomena encoded in the propagators of fundamental fields of QCD. In particular,

gluon and ghost propagators encode information about confinement. While most of the studies of

QCD propagators are done in Landau gauge ∂µAµ(x) = 0 [1, 2, 3, 4, 5, 6], we would like to go

beyond this gauge to understand the gauge dependent properties of QCD propagators.

Here we consider the linear covariant gauge (LCG), defined by ∂µAµ(x) =Λ(x), where Λ(x) =
Λa(x)ta are matrices belonging to the SU(N) Lie algebra, and Λa(x) are random real numbers,

Gaussian distributed around zero with a variance ξ .

The LCG gluon propagator has already been studied on the lattice by some authors [7, 8, 9, 10].

In this paper we report a lattice calculation of the LCG ghost propagator — see also [11] for a recent

report.

2. Landau and LCG ghost propagator on the lattice

On the lattice, the Landau gauge is defined through the numerical optimization, along the

gauge orbit, of the gauge fixing functional

FLandau(Ug) =−∑
x,µ

Retr
[

g(x)Uµ(x)g†(x+ µ̂)
]

. (2.1)

From the first variation of eq. (2.1) one gets a lattice version of the Landau gauge condition ∂µAa
µ =

0, whereas the second variation defines the symmetric matrix

Mab
xy = ∑

µ
Retr

[{

ta
, tb

}

(

Uµ(x)+Uµ(x− µ̂)
)

]

δxy

− 2∑
µ

Retr
[

tbtaUµ(x)
]

δx+µ̂,y −2∑
µ

Retr
[

tatbUµ(x− µ̂)
]

δx−µ̂,y. (2.2)

At some minimum of the functional (2.1), Mab
xy is positive semi-definite. One can show that (2.2)

is a suitable discretization of the continuum operator − 1
2

(

∂µDab
µ +Dab

µ ∂µ
)

, which in the Landau

gauge is equal to −∂µDab
µ , i.e. the usual Faddeev-Popov (FP) operator. The lattice approach to

compute the Landau gauge ghost propagator consists in inverting the matrix described by eq. (2.2).

Since Mab
xy is symmetric and positive semi-definite, the Conjugate Gradient method can be used to

perform such inversion.

Similarly, the linear covariant gauge can be defined on the lattice through the numerical opti-

mization of the gauge fixing functional [10]

FLCG(Ug;g) = FLandau(Ug)+Retr∑
x

[ig(x)Λ(x)] . (2.3)

The first variation defines the lattice analogue of the LCG condition in the continuum, whereas the

second variation defines the same symmetric matrix, eq. (2.2), as in Landau gauge. However, in

the LCG case, eq. (2.2) is not a suitable discretization of the continuum FP operator.
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A suitable lattice discretization of the LCG FP operator, with the correct continuum limit, can

be found by defining the lattice operators

[

M+
]ab

xy
= Mab

xy +[∆M]ab
xy (2.4)

[

M−
]ab

xy
= Mab

xy − [∆M]ab
xy (2.5)

where

[∆M]ab
xy = Retr∑

µ

[[

ta
, tb

]

(

Uµ(x)−Uµ(x− µ̂)
)

]

δxy. (2.6)

The matrices M+ and M− are suitable discretizations of the continuum operators −∂µDµ and

−Dµ∂µ respectively. Note that M, M+ and M− can not be distinguished as quadratic forms, in

the sense that

ωa(x) [∆M]ab
xy ωb(y) = ωa(x) fabc Retr

[

itc
(

Uµ(x)−Uµ(x− µ̂)
)]

ωb(y) = 0, (2.7)

due to the antisymmetry of the structure constants fabc.

3. Results

The matrix M+ provides a suitable lattice discretization of the continuum FP operator, enabling

a lattice computation of the LCG ghost propagator. Since M+ is a real non-symmetric matrix, it can

not be inverted using Conjugate Gradient method (as in Landau gauge) and, therefore, we rely on

the Generalized Conjugate Residual method, described e.g. in [12]. To avoid possible zero modes1

of M+ , we solve the system [13]

M+M+X = M+b

that, for performance purposes, is solved in two steps

M+Y = M+b;

M+X = Y.

In Figures 1 and 2 we report our results for the LCG ghost propagator, evaluated using a point

source for the inversion. We considered SU(3) pure gauge simulations using the Wilson action at

β = 6.0, which corresponds to a lattice spacing a ∼ 0.102 fm. For 164 and 244 lattice volumes, we

have generated 100 thermalized gauge configurations, and 20 sets of Gaussian-distributed {Λ(x)}
matrices for each configuration. We compare with the Landau gauge ghost propagator, computed

from the same set of configurations. No clear difference between Landau and LCG data is observed

in the plots.

4. Conclusion

We discussed an approach to compute the LCG ghost propagator on the lattice, and presented

numerical results for small lattice volumes. LCG lattice data is in agreement with Landau gauge

results. Similar results have been obtained using SU(2) pure gauge simulations [11, 14].

1Note that, in the LCG case, constant vectors are not zero modes of M+.
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Figure 1: Landau and LCG ghost propagators (ξ ∈ {0.1,0.2,0.3}) for a 164 lattice volume.
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Figure 2: Landau and LCG ghost propagators (ξ ∈ {0.1,0.2}) for a 244 lattice volume.
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