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We study the spatial distribution of the stress tensor around static quark-anti-quark pair in SU(3)
lattice gauge theory. In particular, we reveal the transverse structure of the stress tensor distri-
bution in detail by taking the continuum limit. The Yang-Mills gradient flow plays a crucial
role to make the stress tensor well-defined and derivable from the numerical simulations on the
lattice [1].
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Linear confinement and stress-energy tensor around static quark and anti-quark pair Ryosuke Yanagihara

1. Introduction

The energy-momentum tensor (EMT), Tµν(x), is a fundamental observable in physics. Its
spatial component is called the stress tensor, σi j = −Ti j, which represents the distortion of fields
induced by external sources. The Maxwell stress-tensor in electromagnetism is a well-known ex-
ample: σMaxwell

i j =−T Maxwell
i j =−(FiµFµ

j −
1
4 δi jF2

µν) [2]. EMT in Yang-Mills (YM) theory plays
a particularly important role because it represents the response of the YM field against external
sources in a gauge invariant manner.

In this work [1], we explore the stress distribution around a static quark (Q) and an anti-quark
(Q̄) separated by length R. In YM theory, the field strength is believed to be squeezed into a quasi-
one-dimensional structure called the flux tube and gives rise to the linear confining potential [3].
In previous studies on the structure of the flux tube, the action density and the color electric field
have been employed [4–6]. In the present study we perform a first measurement of the stress tensor
distribution around static QQ̄ pair. We use the EMT operator on the lattice [7] defined via the YM
gradient flow [8], which has been applied extensively to the study on thermodynamics [9, 10].

2. Energy-Momentum Tensor around Static Quark and Anti-Quark

We first recapitulate the general feature of Tµν(x) in the Euclidean spacetime with µ,ν =

1,2,3,4. The local energy density and the stress tensor read respectively as ε(x)=−T44(x), σi j(x)=
−Ti j(x) (i, j = 1,2,3). The force per unit area Fi is the momentum flow through a given surface
element with the normal vector ni: Fi = σi jn j =−Ti jn j [2]. The principal axes of stress tensor is
obtained by diagonalized Ti j as Ti jn

(k)
j = λkn(k)i (k = 1,2,3), where n(k)i are the principal axes and

the strengths of the force per unit area along n(k)i are given by the absolute values of the eigenvalues,
λk. The force acting on a test charge is obtained by the surface integral Fi = −

∫
S Ti jdS j, where S

is a surface surrounding the charge with the surface vector S j oriented outward from S.
Next let us review how we obtain Tµν(x) non-perturbatively around static QQ̄ on the lattice.

First, a static QQ̄ system on the lattice is prepared with the rectangular Wilson loop W (R,T ) where
QQ̄ locate at ~R± = (0,0,±R/2) and in the temporal interval [−T/2,T/2]. Second, to define EMT
in YM theory we use the YM gradient flow [7, 9, 10]. The starting point of this method is the YM
gradient flow equation dAµ(t,x)/dt = −g2

0δSYM(t)/δAµ(t,x), where t denotes the fictitious 5-th
dimensional coordinate [8], and SYM(t) is composed of Aµ(t,x), whose initial condition at t = 0
is the ordinary gauge field Aµ(x) in the four dimensional Euclidean space. The gradient flow for
positive t leads to cooling of the gauge field within the radius

√
2t. From the flowed field, the

renormalized EMT operator is defined as [7]

T R
µν(x) = lim

t→0
Tµν(t,x), Tµν(t,x) =

Uµν(t,x)
αU(t)

+
δµν

4αE(t)
[E(t,x)−〈E(t,x)〉0]. (2.1)

Here E(t,x) = (1/4)Ga
µν(t,x)G

a
µν(t,x) and Uµν(t,x) = Ga

µρ(t,x)G
a
νρ(t,x)− δµνE(t,x) with the

field strength Ga
µν(t,x) composed of the flowed gauge field Aµ(t,x). The vacuum expectation

value 〈Tµν(t,x)〉0 is normalized to be zero due to the subtraction of 〈E(t,x)〉0. We use the next-to-
leading-order coefficients for αU(t) and αE(t) [7]. The validity and usefulness of this EMT operator
have been confirmed via the study on thermodynamic quantities in SU(3) YM theory [9, 10].
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β a [fm] N4
size Nconf R/a T/a

6.304 0.058 484 140 8 12 16 8
6.465 0.046 484 440 10 – 20 10
6.513 0.043 484 600 – 16 – 10
6.600 0.038 484 1,500 12 18 24 12
6.819 0.029 644 1,000 16 24 32 16

R [fm] 0.46 0.69 0.92

Table 1: Simulation parameters on the lattice [1]. Spatial size of the Wilson loop R is shown in the lattice
and physical units. Temporal size of the Wilson loop is set to T unless otherwise stated.

The expectation value of Tµν(t,x) around the QQ̄ is obtained by [11]

〈Tµν(t,x)〉QQ̄ = lim
T→∞

〈Tµν(t,x)W (R,T )〉0
〈W (R,T )〉0

, (2.2)

where T → ∞ is to pick up the ground state of QQ̄. The measurements of Tµν(t,x) for different
values of t are made at the mid temporal plane xµ = (~x,x4 = 0), while W (R,T ) is defined at t = 0.

Finally, we obtain the renormalized EMT distribution around QQ̄ from the lattice data by
taking the double limit, 〈T R

µν(x)〉QQ̄ = limt→0 lima→0〈Tµν(t,x)〉lat
QQ̄ [9, 10]. In lattice simulations

we measure 〈Tµν(t,x)〉lat
QQ̄ at finite t and a, and make an extrapolation to (t,a) = (0,0) according

to the formula [10], 〈Tµν(t,x)〉lat
QQ̄ ' 〈T

R
µν(x)〉QQ̄ + bµν(t)a2 + cµνt, where bµν(t) and cµν are

contributions from lattice discretization effects and the dimension six operators, respectively.

3. Setup

We have performed the numerical simulations in SU(3) YM theory on the four-dimensional
Euclidean lattice with the Wilson gauge action and the periodic boundary condition. The setup for
the simulation is summarized in Table 1. In the measurement of the Wilson loop W (R,T ), we adopt
the standard APE smearing for each spatial link [12] to enhance the overlap between W (R,T ) and
the QQ̄ ground state. For the noise reduction, we also adopt the standard multi-hit procedure by
replacing every temporal links [4, 13].

We consider three QQ̄ distances (R = 0.46,0.69,0.92 fm) shown in Table 1, which are compa-
rable to the typical scale of strong interaction. While the largest R is half the spatial lattice extent
aNsize for the two finest lattice spacings, the finite size effects are known to be well suppressed even
with this setting [4]. A measure of the ground state saturation in the QQ̄ system is characterized
by P(R,T ) =C0(R)e−V (R)T/〈W (R,T )〉0 with the ground-state potential V (R) and the ground-state
overlap C0(R) obtained at large T [4]. The data at a= 0.038 fm shows |1−P(R,T )|< 0.5% as long
as T > 0.19 fm for all R in Table 1. Employing T ' 0.46 fm as shown in the last column of Table 1
ensures the ground state saturation of the Wilson loop. In order to avoid the discritization effect and
the over-smearing of the gradient flow [10], one has to choose an appropriate window of t satisfying
the condition a/2 . ρ . L, where ρ ≡

√
2t is the flow radius and L≡min(|~x−~R+|, |~x−~R−|,T/2)

is the minimal distance between xµ = (~x,0) and the Wilson loop.
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Figure 1: (a) Distribution of the principal axes of Ti j for a QQ̄ system separated by R = 0.69 fm in SU(3)
Yang-Mills theory with a = 0.029 fm and t/a2 = 2.0 [1]. (b) Distribution of the principal axes of the Ti j

in classical electrodynamics between opposite charges. In both figures, the red (blue) arrows in the upper
(lower) half plane are highlighted.
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t/ā2

10

11

12

13

14
(c) a= 0. 029 fm

a= 0. 038 fm

a= 0. 046 fm

a= 0. 058 fm

continuum

Range-1

Range-2

Range-3

Figure 2: zz component of the stress tensor at ~x = 0, for various a and t with R = 0.46 fm [1]. (a)
〈Tzz(t,0)〉lat

QQ̄ as a function of T/ā with a = ā = 0.029 fm. To take the double limit, the data at T/ā = 16

indicated by the yellow band is used. (b) Open symbols with errors denote 〈Tzz(t,0)〉lat
QQ̄ as a function of

a2/ā2. The filled black symbols are the results of the a→ 0 limit for each t. (c) Open symbols with errors
are 〈Tzz(t,0)〉lat

QQ̄ as a function of t/ā2 for different a. The solid line corresponds to the result of a→ 0 limit

in the interval 2≤ t/ā2 ≤ 5 with shaded band being statistical error. The filled black symbols are the results
of the t→ 0 extrapolation from three different ranges of t.

4. Stress Distribution on the Plane including Two Sources

Here, we consider the stress distribution on the plane including two charges. Shown in
Fig. 1 (a) is the two eigenvectors of the local stress tensor around the two charges separated by
R = 0.69 fm obtained on the finest lattice with a = ā≡ 0.029 fm with fixed t/a2 = 2.0. The other
eigenvector is perpendicular to the y-z plane. The eigenvector with negative (positive) eigenvalue
is denoted by the red outward (blue inward) arrow with its length proportional to

√
|λk|:

←◦→ : λk < 0, →◦← : λk > 0. (4.1)

Neighbouring volume elements are pulling (pushing) with each other along the direction of red
(blue) arrow. The spatial regions near Q and Q̄, which would suffer from over-smearing, are ex-
cluded in Fig. 1. The direct analysis of the stress tensor clearly reveals the spatial structure of the

3
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Figure 3: EMT distribution on the mid-plane after the double limit −〈T R
cc (r)〉QQ̄ and −〈T R

44(r)〉QQ̄ in the
cylindrical coordinate system for three different values of the QQ̄ distance R [1].

flux tube in a gauge invariant manner. This is in contrast with the case of the classical electrody-
namics with opposite charges shown in Fig. 1 (b).

5. Stress Distribution on the Mid-Plane between Two Sources

Let us turn to the mid-plane between Q and Q̄. As we take the double extrapolation in the
following analysis, we first show this procedure focusing on the mid point ~x = 0 as an example.
Fig. 2 (a) shows the T dependence of 〈Tzz(t,0)〉lat

QQ̄ for several values of t with a = 0.029 fm (≡ ā).
The figure indicates that there exists a plateau at large T , while it becomes narrower as t becomes
larger and disappears at t/ā2 ∼ 6 (i.e., ρ ∼

√
12ā = 0.10 fm). The existence of the plateau means

the ground state saturation, while its violation comes from the over-smearing effect. From Fig. 2,
we thus conclude that the over-smearing effect is not severe with T = 16ā = 0.46 fm at t/ā2 ≤ 5.
The same conclusion applies to all the other lattice spacings in Table 1. On the other hand, the
lattice discretization effect is non-negligible due to the under smearing at t/ā2 = 2 (ρ = a = 0.058
fm) on the coarsest lattice. Therefore, in the following analysis, we focus on the data in the interval
2≤ t/ā2 ≤ 5 (2ā≤ ρ ≤

√
10ā), which satisfies a/2 . ρ . L with margin.

In Fig. 2 (b), we show the a2/ā2 dependence of 〈Tzz(t,0)〉lat
QQ̄ for various t by the open triangles.

Here, we have taken the continuum limit with fixed t which is shown by the filled black squares.
In Fig. 2 (c), we show the values of 〈Tzz(t,0)〉lat

QQ̄ for various values of a and t/ā2 by the open
symbols, and the result of the continuum extrapolation in the interval 2 ≤ t/ā2 ≤ 5 by the black
solid line with the shaded error band. The t → 0 limit is carried out by using the values in the
continuum limit. We have carried out the t→ 0 extrapolation with three fitting windows in order to
estimate the systematic errors: 3≤ t/ā2 ≤ 4 (Range-1), 2≤ t/ā2 ≤ 4 (Range-2) and 3≤ t/ā2 ≤ 5
(Range-3). The final results of 〈T R

zz (0)〉QQ̄ after the double limit are shown by the filled black
symbols. The dashed line represents the extrapolation with Range-1.

Let us now turn to the whole mid-plane. We use the cylindrical coordinate system c =

(r,θ ,z) with r =
√

x2 + y2 and 0 ≤ θ < 2π . On the mid-plane, because of the cylindrical sym-
metry and the parity symmetry with regard to z axis, EMT is diagonalized as 〈Tcc′(t,x)〉lat

QQ̄ =

diag(〈Trr(t,r)〉lat
QQ̄,〈Tθθ (t,r)〉lat

QQ̄,〈Tzz(t,r)〉lat
QQ̄). To take the continuum limit, we need the data at

the same r for different a. We consider the values of r at which the lattice data are available on the
finest lattice. To obtain the data at these r on lattices with other a, we interpolate the lattice data

4
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Figure 4: R dependence of the QQ̄ forces, −Fstress and −Fpot [1]. Error bars and rectangular boxes for the
latter represent the statistical and systematic errors, respectively.

〈Tcc(t,r)〉lat
QQ̄ and 〈T44(t,r)〉lat

QQ̄ with the commonly used functions to parametrize the transverse

profile of the flux tube: fBessel(r) = A0K0
(√

Br2 +C
)

with the 0th-order modified Bessel function
K0(x) [14] and fexp(r) = (A0+A1r2)e(−2

√
r2+B2+2B)/C [6]. The t→ 0 limit is taken in the same way

as explained above.

In Fig. 3, we show the r dependence of the resulting EMT. From the figure, one finds sev-
eral noticeable features: (i) Approximate degeneracy between temporal and longitudinal compo-
nents is found for a wide range of r: 〈T R

44(r)〉QQ̄ ' 〈T R
zz (r)〉QQ̄ < 0. We also find 〈T R

rr (r)〉QQ̄ '
〈T R

θθ
(r)〉QQ̄ > 0, which does not have an obvious reason except at r = 0. (ii) The scale symmetry

broken in the YM vacuum (the trace anomaly) is partially restored inside the flux tube, which is
related to the non-zero trace anomaly, 〈T R

µµ(r)〉QQ̄ = 〈T R
44(r)+T R

zz (r)+T R
rr (r)+T R

θθ
(r)〉QQ̄ < 0.

This is in sharp contrast to the case of classical electrodynamics; T44(r) = Tzz(r) = −Trr(r) =
−Tθθ (r) and Tµµ(r) = 0 for all r. (iii) Each component of EMT at r = 0 becomes smaller as R
becomes larger, while the transverse radius of the flux tube, typically about 0.2 fm, seems to be
wide for large R [6, 11], although the statistics is not enough to discuss the radius quantitatively.

Finally, we show a non-trivial consistency check of our analysis. We can define the force acting
on the charge located at z > 0 in two different ways, which should give the same result. First, the
force is defined from the QQ̄ potential as Fpot =−dV (R)/dR. Second, one can also obtain the force
by the surface integral of the stress-tensor surrounding the charge, Fstress =−

∫
〈Tz j(x)〉QQ̄ dS j. For

Fpot, we fit the numerical data of V (R) calculated from the Wilson loop at a = 0.038 fm with the
Cornell parametrization. Note that this lattice spacing is already close to the continuum limit [3].
For Fstress, the surface integral is performed on the mid-plane: Fstress = 2π

∫
∞

0 〈Tzz(r)〉QQ̄ rdr. Here
〈Tzz(r)〉QQ̄ is obtained by fitting the data in Fig. 3 with either fBessel(r) or fexp(r). In Fig. 4,
−Fpot and −Fstress thus obtained are shown by the solid line and the horizontal bars, respectively.
For −Fstress, we take into account not only the statistical error but also the systematic errors from
the double limit and the choice of fitting function, fBessel,exp(r). The agreement between the two
quantities within the errors is a first numerical evidence that the “action-at-a-distance” QQ̄ force
can be described by the local properties of the stress tensor in YM theory.
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6. Summary and Outlook

We have explored the spatial distribution of EMT around the QQ̄ system in SU(3) lattice
gauge theory. The YM gradient flow plays a crucial role to define EMT on the lattice. We have
investigated the stress-tensor distribution on the mid plane by taking the double limit. The linear
confining behavior of the QQ̄ potential at long distances is obtained by the surface integral of the
stress tensor.

There are interesting applications of this study, such as the generalization to full QCD with
the QCD flow equation [16] and the analyses of the QQQ system and the QQ̄ system at finite
temperature.
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