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While neutrino oscillation experiments have demonstrated that neutrinos have small, nonzero
masses, much remains unknown about their properties and decay modes. One potential decay
mode — neutrinoless double beta decay (0νββ ) — is a particularly interesting target of ex-
perimental searches, since its observation would imply that the neutrino is a Majorana particle,
demonstrate that lepton number conservation is violated in nature, and give further constraints on
the neutrino masses and mixing angles. Relating experimental constraints on 0νββ decay rates
to the neutrino masses, however, requires theoretical input in the form of non-perturbative nuclear
matrix elements which remain difficult to calculate reliably. In this talk we will discuss progress
towards first-principles calculations of relevant nuclear matrix elements using lattice QCD and
effective field theory techniques, assuming neutrinoless double beta decay mediated by a light
Majorana neutrino. We will show preliminary results for the π−→ π+e−e− transition amplitude
computed on a 163× 32 domain wall fermion lattice with a pion mass of 420 MeV, and discuss
improved methods applicable to general lattice calculations of 0νββ decay amplitudes.
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1. Introduction

Neutrinoless double beta decay (0νββ ), if observed, would provide a wealth of information
about the properties of neutrinos — including resolving the long-standing question of whether
they are Majorana or Dirac fermions — as well as provide an example of a process violating
lepton number conservation, and hence contributing to baryogenesis, in nature. While 0νββ has
not been observed to date, it is the subject of a large and active experimental search effort, with
bounds on the half-lives of relevant nuclei at the level of T 0ν

1/2 & 1025−1026 yrs [1]. Next-generation
experiments currently underway are aiming to raise these bounds by an additional one to two orders
of magnitude in the near future.

Relating the measured 0νββ decay rate T 0ν

1/2 for a particular nucleus to the effective Majorana
neutrino mass mββ =

∣∣∑k U2
ekmk

∣∣, where mk are the neutrino eigenstate masses and Uek are elements
of the PMNS neutrino mixing matrix, requires theoretical input in the form of a nuclear matrix
element M0ν describing the non-perturbative, hadronic part of the decay(

T 0ν

1/2

)−1
∝
∣∣mββ

∣∣2 G0ν
∣∣M0ν

∣∣2 . (1.1)

Reliably calculating these matrix elements has proven to be a difficult challenge, with predictions
for a given nucleus from different nuclear model calculations differing by 100% or more [2]. Im-
proving this situation is crucial for interpreting experimental results as constraints on the parameters
of particular models of neutrinoless double beta decay moving forward.

In principle, lattice QCD provides an entirely ab-initio method for determining M0ν . However,
in practice, computing matrix elements of the large nuclei relevant to 0νββ searches is well beyond
the computational and algorithmic limits of lattice QCD for the foreseeable future. More realisti-
cally, one could hope to compute matrix elements of quark-level processes such as nn→ ppee, and
relate these to matrix elements of many-body systems within an effective field theory framework.
Another possibility is to compute matrix elements of small nuclei which could be used to probe
the systematics of nuclear model calculations by directly comparing lattice and model predictions.
First calculations of the long-distance contributions to the neutrinoful double beta decay process
nn→ ppeeνν and of the short-distance contributions to neutrinoless double beta decay were re-
ported in Refs. [3] and [4], respectively. In this work we discuss first steps toward computing the
long-distance contributions to 0νββ .

2. Methodology

We assume throughout that neutrinoless double beta decay is mediated by the long-distance
light Majorana neutrino exchange mechanism. At low energies, and after integrating out the W
boson, the underlying Standard Model interaction responsible for this decay is described by the
effective electroweak Hamiltonian

HW = 2
√

2GFVud
(
uLγµdL

)(
eLγµνeL

)
. (2.1)

0νββ is induced at second order in electroweak perturbation theory, leading to the bilocal matrix
element [5]∫

d4xd4y〈 f ee|T {HW (x)HW (y)}|i〉= 4mββ G2
FV 2

ud

∫
d4xd4yHαβ (x,y)Lαβ (x,y), (2.2)
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where
Lαβ ≡ eL(p1)γαSν(x,y)γβ eC

L(p2)e−ip1·xe−ip2·y (2.3)

and
Hαβ ≡ 〈 f |T

{
uL(x)γαdL(x)uL(y)γβ dL(y)

}
|i〉 (2.4)

are tensors describing the leptonic and hadronic parts of the decay, respectively, Sν(x,y) is the
neutrino propagator, and eC

L ≡Ce>L denotes charge conjugation.
To develop lattice methodology we begin by considering the simplest 0νββ process: π−→

π+e−e−. Applying Wick’s theorem to the hadronic matrix element (Eqn. (2.4)) results in two
classes of diagrams and four total contractions, depicted in Figure 1.

(a) Type 1 (b) Type 2

1 = Tr
[
S†

u(t−→ x)γα (1− γ5)Sd(t−→ x)
]
·Tr
[
S†

u(t+→ y)γβ (1− γ5)Sd(t+→ y)
]

(2.5)

2 = Tr
[
S†

u(t+→ x)γα (1− γ5)Sd(t−→ x)S†
u(t−→ y)γβ (1− γ5)Sd(t+→ y)

]
(2.6)

Figure 1: Hadronic contractions for the π−→ π+e−e− decay. Square dots denote insertions of the
effective electroweak Hamiltonian (Eqn. (2.1)).

We denote the time slices of the π− source and π+ sink by t− and t+, respectively. The
remaining two contractions are obtained by exchanging the locations of the weak current insertions
(x↔ y) and Lorentz indices (α ↔ β ).

To extract the desired matrix element we employ methods which have been successfully ap-
plied to other second-order electroweak processes on the lattice, including the neutrinoful double
beta decay process nn→ ppeeνν [3] and kaon decays [6, 7, 8]. By inserting a sum over intermedi-
ate states n into the bilocal matrix element of Eqn. (2.2) it can be shown that the analogous lattice
correlation function has the asymptotic time dependence

Cπ→πee(t) ∝ ∑
n

|Zπ |2

4m2
π

e−mπ t

2En

〈πee|HW |n〉〈n|HW |π〉
En−mπ

[
T +

e−(En−mπ )T −1
En−mπ

]
(2.7)

for pions at rest, where T is the size of the temporal integration window for the weak current
insertions and t = |t+− t−| is the π−− π+ source-sink separation. In deriving this formula we
have assumed that the current insertions are kept sufficiently far from the pion source and sink that
potential couplings to excited states may be safely neglected. At large T one can extract the matrix
element

M0ν = ∑
n

〈πee|HW |n〉〈n|HW |π〉
En−mπ

(2.8)

2



P
o
S
(
L
A
T
T
I
C
E
2
0
1
8
)
2
6
2

Nuclear Matrix Elements for 0νββ from Lattice QCD David Murphy

from a linear fit to the T dependence of Eqn. (2.7).
In the present context we expect the lowest energy intermediate states to consist of a purely

leptonic state |eνe〉 and a single pion state |πeνe〉, which require special consideration. The |eνe〉
state contributes a term to Eqn. (2.7) which grows exponentially as T → ∞, while, for the |πeνe〉
state, the energy denominator En−mπ ≈ me becomes small, potentially contributing a term ∝ T 2.
The remaining tower of multi-hadron states have energies En > mπ and thus will contribute terms
to Eqn. (2.7) which are asymptotically linear at large T .

3. Pilot Lattice Study of the π−→ π+e−e− Decay

We have performed a pilot calculation using 1000 independent gauge field configurations of
the 163×32×16 domain wall fermion (DWF) ensemble described in Ref. [9]. This ensemble has a
lattice cutoff of a−1 = 1.6 GeV and a physical volume of (2fm)3, with an unphysically heavy quark
mass corresponding to a pion mass of mπ = 420 MeV. We use Coulomb gauge-fixed wall source
propagators for the quarks, and a free overlap propagator with an infinite temporal extent for the
neutrino. Since performing the full integration over the locations of both weak current insertions
is prohibitively expensive, we follow the strategy employed in Refs. [6, 7, 8] and treat the weak
current insertions asymmetrically: the operator at x is fixed at the (spatial) origin while the operator
at y is integrated over the spatial directions. Improved methods which will be used in future lattice
calculations are discussed in Section 4.

In the left panel of Figure 2 we plot the integrated bilocal matrix element described by Eqns. (2.2)
and (2.7) as a function of T , with the overall factor of 4mββ G2

FV 2
ud removed, for a wide range of

neutrino masses me/3 . mββ . 2mπ . For mββ < mπ we observe the expected exponential diver-
gence at large T from the |eνe〉 intermediate state, as well as the emergence of a consistent mββ → 0
limit. We conclude that our calculation is insensitive to the precise choice of mββ over the range
of experimentally relevant neutrino masses. We have also performed the following analysis to ex-
tract the matrix element of Eqn. (2.8): we compute the matrix element describing the transition to
the vacuum hadronic intermediate state — 〈0|HW |π〉 ∝ fπ — and use this result to analytically
construct and subtract the contribution from the |eνe〉 intermediate state to Eqn. (2.7). After per-
forming this subtraction, we then fit a quadratic function in T to the remaining sum over higher
intermediate states: from the quadratic term we recover the contribution from the |πeνe〉 state, and
from the linear term we recover the sum over the remaining multi-hadron intermediate states. A
preliminary analysis is summarized in the right panel of Figure 2 and in Table 1.

|eνe〉 |πeνe〉 |neνe〉 (n≥ 2)[
〈πee|HW |n〉〈n|HW |π〉

En−mπ

]
/
[
∑n
〈πee|HW |n〉〈n|HW |π〉

En−mπ

]
-0.0082(15) 1.0082(13) 0.00009(26)

Table 1: Preliminary results for relative contributions from the hadronic vacuum (n = 0) and single
pion (n = 1) intermediate states, as well as the sum over all remaining higher energy intermediate
states (n≥ 2), to the matrix element of Eqn. (2.8).

In addition to extracting the matrix element Eqn. (2.8), lattice data for the quark mass depen-
dence of the π−→ π+e−e− amplitude can also be matched to the known χPT amplitude [10] to
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Figure 2: Left: Preliminary results for integrated bilocal matrix element (Eqn. (2.2)) as a function
of the temporal extent of the spacetime region used to integrate the weak current insertions, for a
variety of neutrino masses given in lattice units. Right: Result for the lightest neutrino mass decom-
posed into the total, contribution from the |eνe〉 intermediate state, and the sum over contributions
from the single pion and higher energy intermediate states.

extract the next-to leading order low energy constant gππ
ν . First steps in this direction have been

performed in Ref. [11], where it was reported that the amplitude is 24% and 9% smaller than the
leading order χPT prediction at mπ = 420 MeV and mπ = 140 MeV, respectively. Performing
an explicit matching using our results with data at additional pion masses will be the subject of a
future study.

4. Exact Treatment of the Neutrino Propagator

Lattice QCD calculations of many-body systems are known to suffer from signal-to-noise
problems. In anticipation of future calculations with baryonic and nuclear initial and final states,
where we expect such signal-to-noise problems to enter, we have explored methods for performing
an exact integration of the matrix element (2.2) over the spacetime locations of both current inser-
tions; naively one expects an O(1/

√
V ) reduction in the statistical error from making use of the

full lattice volume compared to the single sum method of our pilot study. We have also explored
directly using the (Euclidean) infinite volume, continuum scalar propagator with a Gaussian UV
cutoff for the neutrino,

SΛ(x,y) =
∫ d4q

(2π)4
1
q2 eiq·(x−y)e−q2/Λ2

=
1

4π2 |x− y|2

(
1− e−

Λ2
4 |x−y|2

)
, (4.1)

which we expect to reduce finite volume effects compared to using a lattice propagator. Here the
UV cutoff is required to render the matrix element of Eqn. (2.2) finite since the double integration
will include contributions where x→ y. We choose Λ = π/a, where a is the lattice spacing, since
this choice automatically enforces the removal of the UV cutoff Λ→ ∞ in the continuum limit
a→ 0 of the lattice calculation.
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Implementing the double sum is more difficult, since an explicit O(V 2) double integration
is prohibitively expensive even for a modestly-sized lattice calculation running on state-of-the-art
computational resources. Fortunately, the translational invariance of the neutrino propagator can
be exploited to reduce this to O(V logV ) using the convolution theorem

∫
d3xd3y fα(x)Lαβ (x− y)gβ (y) =

∫
d3x fα(x)

[
F−1{F (Lαβ ) ·F (gβ )

}]
(x− y) (4.2)

and the fast Fourier transform (FFT). For the type 1 diagram, which factors into a product of traces
involving only propagators to x or propagators to y, the contractions naturally take the form of
Eqn. (4.2). For the type 2 diagram, which mixes x and y, we compute the convolutions of individual
spin-color components and reconstruct the trace when we perform the final integration over x.

In the discrete lattice theory translational invariance implies that the neutrino propagator has a
block Toeplitz matrix structure, and algorithms for performing block Toeplitz matrix-vector prod-
ucts via FFTs are well known in the literature. We have chosen to implement an algorithm described
in Ref. [12], which performs the convolution and sum over Lorentz indices at the cost of three one-
dimensional FFTs of size 16(2L−1)3 for a lattice of spatial size L. In Figure 3 we benchmark
the performance of this algorithm against an explicit double integration, as well as the single inte-
gration method used in our pilot study. Runtimes are shown for computing the type 2 contractions
integrated over the spatial directions for a single, fixed time ordering of the weak current insertions.
We also compare the performance of the OpenMP-threaded FFTW library running on a single Intel
Xeon CPU to the performance of the cuFFT library running on an Nvidia GTX 1080 Ti GPU. We
find that this strategy is effective in reducing the cost of the double summation to the point that it is
feasible for realistic lattice volumes on existing computational resources. We also note a significant
performance improvement for the GPU relative to the CPU as the lattice volume grows since large
batches of FFTs can be computed in parallel.
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Figure 3: Single-node performance of the FFT-based double summation method described in Sec-
tion 4 using FFTW running on an Intel Xeon CPU and cuFFT running on an Nvidia GTX 1080 Ti
GPU compared to explicit single and double CPU summations for a lattice of spatial length L.

5



P
o
S
(
L
A
T
T
I
C
E
2
0
1
8
)
2
6
2

Nuclear Matrix Elements for 0νββ from Lattice QCD David Murphy

5. Conclusions

We have performed an exploratory lattice QCD calculation of the π− → π+e−e− transition
amplitude on a 163×32×16 domain wall fermion ensemble, and developed substantially improved
methods applicable to general 0νββ decay amplitudes. We are currently using these methods to
compute the π− → π+e−e− amplitude on 243× 64× 16 domain wall fermion ensembles [13] at
multiple pion masses, and including short-distance contributions [4] as well as the long-distance
contributions described in this work. Analyzing these results and matching them to χPT, as well
as extending our calculations to include baryonic and nuclear initial and final states, will be the
subject of future studies.
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