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Results for the mass difference between the long-
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The two neutral kaon states in nature, the KL (long-lived) and KS (short-lived) mesons, are the two
time-evolution eigenstates of the K0−K0 mixing system. The prediction of their mass difference
∆mK based on the Standard Model is an important goal of lattice QCD. In this article, I will
present preliminary results from a calculation of ∆mK performed on an ensemble of 643× 128
gauge configurations with inverse lattice spacing of 2.36 GeV and physical quark masses. These
new results come from 2.5 times the Monte Carlo statistics used for the result presented in last
year’s conference. Further discussion of the methods employed and the resulting systematic errors
will be given.
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1. Introduction

The mass difference between KL and KS is generated by K meson mixing through ∆S = 2 weak
interaction. With its experimental value of 3.483(6)× 10−12 MeV measured with sub percentage
error, a discrepancy between the prediction based on the Standard Model and this value implies
the existence of physics beyond the Standard Model. This quantity is highly non-perturbative and
can be calculated using Lattice QCD from first principles. Since 2013 an exploratory calculation
on a 163 × 32 calculation, with unphysical masses (mπ = 421 MeV) including only connected
diagram[2], the RBC-UKQCD collaborations have been improving the calculation by including
disconnected diagrams and extending measurements to finer lattice spacing [3]. Our most recent
calculation on a 643× 128 lattice with physical masses on 59 configurations gives a preliminary
result of ∆mk = (5.5±1.7)×10−12 MeV [1]. In this article, an update of the methods and results
extending our calculation from 59 to 152 configurations is presented.

2. Integrated Correlator and ∆mK

The KL−KS mass difference is expressed as:

∆MK = 2ReM00 = 2P ∑
n

〈K̄0|HW |n〉〈n|HW |K0〉
mK−En

. (2.1)

To evaluate ∆mK on an Euclidean space lattice, we evaluate the integrated correlators:

A (T ) =
1
2

tb

∑
t2=ta

tb

∑
t1=ta
〈0|T{K̄0(t f )HW (t2)HW (t1)K0(ti)}|0〉, (2.2)

where HW is the ∆S = 1 effective Hamiltonian:

HW =
GF√

2 ∑
q,q′=u,c

VqdV ∗q′s(C1Qqq′
1 +C2Qqq′

2 ). (2.3)

Here the Qqq′
i i=1,2 are current-current operators, defined as:

Qqq′
1 = (s̄iγ

µ(1− γ5)di)(q̄ jγ
µ(1− γ5)q′j), Qqq′

2 = (s̄iγ
µ(1− γ5)d j)(q̄ jγ

µ(1− γ5)q′i), (2.4)

and Vqaqb are the usual CKM matrix elements and Ci are Wilson coefficients.
If we insert a complete set of intermediate states, we identify the coefficient of the term linear

in the size of integration box T = tb− ta + 1 as proportional to the expression for ∆mK given in
Equation 2.1:

A (T ) = N2
Ke−mK(t f−ti)∑

n

〈K̄0|HW |n〉〈n|HW |K0〉
mK−En

{−T +
e(mK−En)T −1

mK−En
}. (2.5)

Before doing a linear fitting with respect to T , the second term in the curly bracket has to be
removed. For an intermediate state |n〉 with energy En larger than mK , for large enough T , the
contribution from the second term is negligible. For a state |n〉 with energy En smaller than or close
to mK , we need to subtract its contribution.
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In our case of physical quark masses, |0〉, |ππ〉, |η〉 and |π〉 states need to be subtracted. With
the freedom of adding the operators sd and sγ5d to the weak Hamiltonian with properly chosen
coefficients cs and cp, we are able to remove two of the contributions. Here we choose cs and cp to
satisfy Equation 2.6 so that contributions from |0〉 and |η〉 will vanish:

〈0|HW − cps̄γ5d|K0〉= 0, 〈η |HW − css̄d|K0〉= 0. (2.6)

As a result, the original ∆S = 1 effective weak Hamiltonian in Equation 2.3 and the current-current
operators should be modified to be :

Q′i = Qi− cpis̄γ5d− csis̄d (2.7)

with cpi and csi are calculated on lattice using Equation 2.8.

csi =
〈η |Qi|K0〉
〈η |sd|K0〉

, cpi =
〈0|Qi|K0〉
〈0|sγ5d|K0〉

. (2.8)

For contractions among Qi, there are four types of diagrams to be evaluated, as shown in
Figure 1. In addition, there are "mixed" diagrams from the contractions between the s̄d, s̄γ5d and
Qi operators, having similar topologies to type 3 and type 4 contractions.

The GIM mechanism removes both quadratic and logarithmic divergences that might other-
wise be expected as the two HW operators approach each other. We therefore include the charm
quark in our calculation and as a result always have the difference between up and charm quark
propagators for every charge +2/3 quark line.

Figure 1: Four types of contractions in the 4-point correlators with Q1 and Q2.

3. From lattice results to physical ∆mK

The fitting of the integrated correlator in Equation 2.2 further breaks into fitting of the inte-
grated correlator with Q1 and Q2:

Ai j(T ) = N2
Ke−mK(t f−ti)∑

n

〈K̄0|Qi|n〉〈n|Q j|K0〉
mK−En

{−T +
e(mK−En)T −1

mK−En
}. (3.1)
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Figure 2: The "mixed" contractions in the 4-point correlators. The top two are products of the csis̄d and
cpis̄γ5d with the Qi and the bottom two are products of the csis̄d and cpis̄γ5d. The diagrams on the left are
similar to type-3 diagrams and the diagrams on the right are similar to type-4 diagrams.

Considering the GIM mechanism, the relationship between Ai j(T ) in Equation 3.1 and A (T )
in Equation 2.2 is:

A (T ) = λ
2
u ∑

i, j=1,2
CiC jAi j(T ), (3.2)

where the Ci are Wilson coefficients and λu =VudV ∗us.
We fit each Ai j(T ) separately and obtain the ki j, coefficient of the linear term of T . The value

of ∆mK from the lattice should be:

∆mlat
K =

G2
F

2
λ

2
u ∑

i, j=1,2
(−2)×Clat

i Clat
j ki j. (3.3)

We obtain the Wilson coefficients of the operators Clat
i in three steps [4] [5]:

• Non-perturbative Renormalization: from lattice to RI-SMOM

• Perturbation theory: from RI-SMOM to MS

• Perturbation theory: Wilson coefficients in the MS scheme

So Clat
1 and Clat

2 can be expressed as:

Clat
i =CMS

a (1+∆r)RI→MS
ab Zlat→RI

bi . (3.4)

4. Sample AMA and super-jackknife method

We use sample All Mode Averaging(AMA) method to reduce the computational cost[6]. The
usual AMA correction is applied on each configuration, among different time slices. In contrast the
sample AMA correction is applied among configurations: on most configurations, quantities are
calculated with a CG stopping residual of 10−4("sloppy"). On the other configurations the same
quantities are calculated with a CG stopping residual of both 10−4("sloppy") and 10−8("exact").
The differences between "sloppy" and "exact" measurements are used as corrections to the "sloppy"
only configurations.

In our case, we have data for type-3 and type-4 diagrams, three-point and two-point func-
tions from both "sloppy" measurements and corrections. We firstly jackknife the "sloppy" and

3



P
o
S
(
L
A
T
T
I
C
E
2
0
1
8
)
2
8
6

∆mK for physical quark masses Bigeng Wang

β aml amh α = b+ c Ls

2.25 0.0006203 0.02539 2.0 12

Table 1: Input parameters of the lattice calculation.

Data Set K0 π η ππI=0

new 152 0.2104(1) 0.0574(1) 0.258(2) 0.1138(5)
old 59 0.2105(2) 0.0576(1) 0.290(29) 0.1137(8)

Table 2: Fitting results for meson masses and π−π energy in lattice units (a−1 = 2.36 GeV)

correction data separately and then use the super-jackknife method to estimate the error of the
super-jackknife samples. For a certain quantity Y , a pion correlator as an example, from the Ns

"sloppy" measurements
{

yi
}

i=1,...,Ns
, we obtain the jackknife "sloppy" ensemble

{
Yi
}

i=1,...,Ns
with

Yi =
1

Ns−1 ∑ j 6=i y j. Similarly, from the Nc corrections
{

∆yi
}

i=1,...,Nc
, we obtain the jackknife cor-

rection ensemble
{

∆Yi
}

i=1,...,Nc
with ∆Yi =

1
Nc−1 ∑ j 6=i ∆y j. We then combine the two jackknife

ensembles to form a super-jackknife ensemble
{

Y ′k
}

k=1,...,Ns+Nc
with Ns +Nc elements, where:

Y ′k = Yk +∆Y , k = 1, ...Ns (4.1)

Y ′k = Y +∆Yk−Ns , k = Ns +1, ...Ns +Nc (4.2)

where ∆Y = 1
Nc

∑
Nc
j=1 ∆Yj is the mean value of the corrections and Y = 1

Ns
∑

Ns
i=1Yi is the mean value

of the "sloppy" measurements.

5. Lattice calculation and results

The calculation was performed on a 643× 128× 12 lattice with 2+1 flavors of Möbius DWF
and the Iwasaki gauge action with physical pion mass (136 MeV) and inverse lattice spacing
a−1 = 2.36 GeV. The inputs parameters are listed in Table 1. We will compare results presented in
Lattice 2017 [1] with our updated results. We have in total 152 configurations, among which 116
configurations are "sloppy" and 36 configurations are used for corrections. In the tables below, we
refer to the updated data set as "new 152" and data set used in 2017 as "old 59".

The masses from fitting two-point correlators are included in Table 2. Amplitudes and coeffi-
cients for subtractions are listed in Table 3, Table 4, and Table 5. These results are consistent within
errors. As the statistics increase, the errors scale approximately as 1√

N
, where N is the number of

total measurements.

Data Set 〈π|Q1|K0〉 〈π|Q2|K0〉 〈0|Q1|K0〉 〈0|Q2|K0〉
new 152 −5.02(3)×10−4 1.407(4)×10−3 −1.284(3)×10−2 2.449(4)×10−2

old 59 −5.08(5)×10−4 1.407(8)×10−3 −1.289(4)×10−2 2.454(7)×10−2

Table 3: The K0 to π matrix element and the K0 to vacuum matrix element, without subtracting the s̄d
operator.
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Data Set cs1 cs2 cp1 cp2

new 152 2.13(33)×10−4 −3.16(25)×10−4 −1.472(2)×10−4 2.807(2)×10−4

old 59 1.53(64)×10−4 −2.77(42)×10−4 −1.476(3)×10−4 2.811(3)×10−4

Table 4: The subtraction coefficients for the scalar and pseudo-scalar operator.

Data Set 〈ππI=2|Q1|K0〉 〈ππI=2|Q2|K0〉 〈ππI=0|Q1|K0〉 〈ππI=0|Q2|K0〉
new 152 1.473(6)×10−5 1.473(6)×10−5 −8.7(1.5)×10−5 9.5(1.5)×10−5

old 59 1.471(10)×10−5 1.471(10)×10−5 −6.6(2.5)×10−5 7.9(2.3)×10−5

Table 5: The K to ππ matrix element for Isospin 0 and 2. The I=2 matrix element for Q1 and Q2 are the
same because they come from the same three point diagrams.

5.1 Four-point integrated correlators and ∆mK

The integrated correlators Ai j(T ) are plotted in Figure 3 . The fitted slopes ki j all should be
improved with 2.5 times our earlier statistics. The ∆mK value and separated contributions from dif-
ferent types of diagrams after normalization are shown in Table 6. Based on the formula proposed
in [7], our estimated finite-volume correction for ∆mK is:

∆mK(FV ) =−0.22(7)×10−12MeV

and our preliminary result for ∆mK is:

∆mK = 7.9(1.3)×10−12MeV.

In order to realize the GIM mechanism in our calculation, the charm quark is included in our
calculation. The lattice spacing in our calculation is a−1 = 2.36 GeV, which is only twice the
charm quark mass. Discretization effects are estimated to be the largest source of systematic error:
∼ (mca)2 is ∼ 25%.

Figure 3: Integrated correlators Ai j(T ). The left plot shows the result from "old 59". The right plot shows
the result from "new 152".

5.2 Sample AMA correction

Our use of the sample AMA method reduced the computational cost of the calculation by a
factor of 2.3, while the statistical error on the correction will add to the total statistical error. Table
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Data Set ∆mK ∆mK(tp12) ∆mK(tp34) ∆mK(tp3) ∆mK(tp4)
new 152 8.2(1.3) 8.3(0.6) 0.1(1.1) 1.58(31) -1.28(94)
old 59 5.8(1.8) 7.0(1.3) -1.1(1.2) 1.17(43) -2.16(1.20)

Table 6: Results for ∆mK from uncorrelated fits in units of 10−12 MeV with fitting range 10:20.

Data Set type 3&4 error type 3&4 error type 3&4 error
from "sloppy" from correction in total

new 152 0.9 0.6 1.1
old 59 1.1 0.6 1.2

Table 7: Error contributions to ∆mK from type-3 and type-4 diagrams (in units of 10−12 MeV ). From left
to right, type-3 and type-4 errors from "sloppy", from correction and in total are shown. In our calculation,
type-3 and type-4 diagrams are AMA corrected while type-1 and type-2 diagrams are only calculated as part
of the exact measurements that are also used to determine the corrections for the type-3 and type-4 diagrams.

7 shows the size of the error coming from the correction which is added in quadrature to give our
final error. We can conclude that the AMA method does not contribute much to the error in our
final answer.

6. Conclusion and Outlook

Our preliminary result for ∆mK based on 152 configurations with physical quark masses is:

∆mK = 7.9(1.3)(2.1)×10−12MeV.

Here the first error is statistical and the second is an estimate of largest systematic error, the
discretization error which results from including a charm quark with mc = 0.31 in our calculation.
Our ∆mK value is to be compared with the experimental value 3.483(6)× 10−12 MeV. However,
we view such a comparison as premature given the possibly large and poorly estimated finite lattice
spacing error. In the future, planned ∆mK calculations on SUMMIT with finer lattice spacing will
provide a better estimate of the systematic errors coming from discretization effects.
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