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1. Introduction

The B → D(∗)`ν semileptonic decays provide a determination of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix element |Vcb|. There has, however, been a long-standing tension with
|Vcb| from the inclusive decay [1], which has to be resolved towards an unambiguous interpretation
of precise experimental data from forthcoming experiments at LHCb and Belle II. Lattice simula-
tions play a central role in controlling theoretical uncertainties due to non-perturbative aspects of
QCD [2]. So far, only a few modern studies have been performed for the B→D [3, 4] and B→D∗

decays [5, 6, 7, 8] on gauge ensembles with staggered-type sea quarks. We also note that only
preliminary results are available for B→D∗ at nonzero recoil [6, 8].

The JLQCD Collaboration is pursuing a series of studies of B meson decays [9, 10, 11, 12]
including the B→π`ν [11] and inclusive decays [12], which are relevant to the tension in the CKM
matrix elements. In this article, we report on our on-going calculation of the B→D(∗) form factors
at zero and non-zero recoils.

2. Simulation

We simulate 2+1 flavor QCD using the tree-level improved Symanzik gauge action and the
Möbius domain-wall quark action [13]. A careful choice of the detailed structure of the latter [14]
enables us to preserve chiral symmetry to good accuracy at moderately large lattice cutoff a−1'
2.5 – 4.5 GeV. This simplifies the renormalization of the relevant weak currents. We simulate the
strange quark mass ms close to its physical value, whereas the degenerate up and down quark mass
mud corresponds to pion masses as low as Mπ ∼ 310 MeV. In this article, we present our results
at three combinations of (a−1,mud ,ms) listed in Table 1. At each (a−1,mud ,ms), the spatial lattice
size L satisfies a condition MπL& 4 to control finite volume effects, and the statistics are 5,000
Molecular Dynamics time. We note that calculations at a larger cutoff a−1∼4.5 GeV and a lighter
Mπ∼230 MeV are underway.

At the moderately large cutoffs a−1≥ 2.5 GeV, we employ the same action for charm and
bottom quarks. The charm quark mass mc is set to its physical value, whereas we take bottom
quark masses mb =1.252mc and 1.254mc if mb≤0.8a−1. From our studies of the B and D meson
(semi)leptonic decays [9, 11, 15], discretization errors are not expected to be large with this setup.

3. Form factors

The B→D decay proceeds only through the weak vector current Vµ due to parity symmetry of
QCD, whereas the axial current Aµ also contributes to B→D∗. The relevant matrix elements are

Table 1: Simulation parameters. N3
s×Nt×N5 represents the five dimensional lattice size for the domain-wall

formulation. Quark masses are bare value in lattice units.
β N3

s ×Nt×N5 a−1[GeV] mud ms Mπ [MeV] MK[MeV] mb/mc ∆t +∆t ′

4.17 323×64×12 2.453(4) 0.019 0.040 499(1) 618(1) 1.252 24, 28
4.17 323×64×12 2.453(4) 0.007 0.040 309(1) 547(1) 1.252 22, 26
4.35 483×96×8 3.610(9) 0.012 0.025 501(2) 620(2) 1.252, 1.254 36, 42
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parametrized by six form factors in total:

√
MBMD

−1〈D(p′)|Vµ |B(p)〉 = (v+ v′)µh+(w)+(v− v′)µh−(w), (3.1)
√

MBMD∗
−1〈D∗(ε, p′)|Vµ |B(p)〉 = εµνρσ ε

∗νv′ρvσ hV (w), (3.2)
√

MBMD∗
−1〈D∗(ε, p′)|Aµ |B(p)〉 = −i(w+1)ε

∗
µ hA1(w)+ i(ε∗v)vµ hA2(w)+ i(ε∗v)v′µ hA3(w), (3.3)

where v=p/MB and v′=p′/MD(∗) are the four velocity of B and D(∗), w= vv′ is the recoil parameter,
and ε is the polarization vector of D∗ satisfying ε p′=0. In this study, the B meson is at rest (p=0),
and we change the three momentum of D(∗) as |p′|2=0,1,2,3 (in units of (2π/L)2) to study the w
dependence of the form factors.

These matrix elements can be extracted from the asymptotic behavior of three-point functions

CBD(∗)
OΓ

(∆t,∆t ′;p,p′)

=
1

Ntsrc
∑
tsrc

∑
xsrc,x,x′

〈OD(∗)(x′, tsrc +∆t +∆t ′)OΓ(x, tsrc +∆t)OB(xsrc, tsrc)
†〉e−ip(x−xsrc)−ip′(x′−x)

→
Z∗D(∗)(p′)ZB(p)
4ED(∗)(p′)EB(p)

〈D(∗)(p′)|OΓ|B(p)〉e−E
D(∗) (p′)∆t ′−EB(p)∆t (∆t,∆t ′→ ∞), (3.4)

where OΓ =Vµ or Aµ , and the argument ε is suppressed for ZD∗ and |D∗(p′)〉. Gaussian smearing
is applied to the interpolating field OP (P=B,D,D∗) to enhance its overlap to the ground state
ZP(p)= 〈P(p)|O†

P〉. We take two values of the total temporal separation ∆t +∆t ′ listed in Table 1
to check whether the excited contamination is sufficiently suppressed. The two-point function

CP(∆t;p) =
1

Ntsrc
∑
tsrc

∑
xsrc,x
〈OP(x, tsrc +∆t)OP(xsrc, tsrc)

†〉e−ip(x−xsrc)→ |ZP(p)|2

2EP(p)
e−EP(p)∆t (3.5)

is also measured to estimate the rest mass MP, energy EP and the overlap factor ZP (P=B,D,D∗).
We improve the statistical accuracy of the three- and two-point functions, CBD(∗)

OΓ
and CP, by

averaging over the source location (xsrc, tsrc). For the temporal location tsrc, we simply repeat our
calculation at two different time-slices (hence, Ntsrc = 2 in Eqs. (3.4) and (3.5)). The summation
over the spatial location xsrc is implemented by using the volume source with Z2 noise. We also
average CBD(∗)

OΓ
and CP over the momentum configurations, which are equivalent due to rotational

and parity symmetries. These procedures improve the statistical accuracy by factor of 2 – 4 with
our simulation setup.

We construct ratios of CBD(∗)
OΓ

and CP for a more precise and reliable calculation of the form
factors. The double ratios without nonzero momentum [16]

RBD(∗)

1(i) (∆t,∆t ′) =
CBD(∗)

V4(Ai)
(∆t,∆t ′;0,0)CD(∗)B

V4(Ai)
(∆t,∆t ′;0,0)

CBB
V4(Ai)

(∆t,∆t ′;0,0)CDD
V4(Ai)

(∆t,∆t ′;0,0)
−−−−−→
∆t,∆t ′→∞

|h+(A1)(1)|
2 (3.6)

give an accurate estimate of h+ and hA1 at zero recoil w= 1, which are important inputs in the
conventional determination of |Vcb|. The analysis of h+ and h− at nonzero recoil w>1 is analogous
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Figure 1: Ratios of three-point functions for B→D∗. The left and right panels show RBD∗
1i (∆t,∆t ′;0,0) and

RBD∗
3i (∆t,∆t ′;0,p′⊥), respectively, as a function of ∆t. We plot data at β =4.17 and (mud ,ms)=(0.019,0.040).

The open circles and filled squares show data with ∆t +∆t ′=28 and 24, respectively. The red horizontal
lines show a constant fit to data with ∆t +∆t ′=24.

to our study of K→π and previous studies of B→D [17, 3, 4]. Together with ratios

RBD
2 (∆t,∆t ′;0,p′) =

CBD
V4

(∆t,∆t ′;0,p′)CD(∆t ′,0)
CBD

V4
(∆t,∆t ′;0,0)CD(∆t ′,p′)

→ (1+w)h+(w)+(1−w)h−(w)
2h+(1)

, (3.7)

RBD
3i (∆t,∆t ′;0,p′) =

CBD
Vi

(∆t,∆t ′;0,p′)
CBD

V4
(∆t,∆t ′;0,p′)

→ v′i
h+(w)−h−(w)

(1+w)h+(w)+(1−w)h−(w)
, (3.8)

we can reconstruct the form factors as

h+(−)(w) =
√

RBD
1 RBD

2

{
1± (1∓w)

RBD
3i
v′i

}
. (3.9)

The analysis of B→D∗ is slightly more involved, and we need to distinguish the D∗ momentum
p′6⊥, which induces εv 6=0 through the convention ε p′=0, and p′⊥ leading to εv=0 (note that v=0
in this study). The w-dependence of hA1 can be studied by a ratio similar to (3.7) with Ai and p′⊥

RBD∗
2i (∆t,∆t ′;0,p′⊥) =

CBD∗
Ai

(∆t,∆t ′;0,p′⊥)CD∗(∆t,0)
CBD∗

Ai
(∆t,∆t ′;0,0)CD∗(∆t,p′⊥)

→ 1+w
2

hA1(w)
hA1(1)

, (3.10)

whereas a ratio CBD∗
A{i,4}

(∆t,∆t ′;0,p′6⊥)/CBD∗
Ai

(∆t,∆t ′;0,p′⊥) is sensitive to hA2 and hA3 at w>1 [6]. A
form factor ratio R1(w)=hV (w)/hA1(w) is a key quantity in recent phenomenological discussions
about the tension in |Vcb|, and is determined from

RBD∗
3i (∆t,∆t ′;0,p′⊥) =

CBD∗
Vi

(∆t,∆t ′;0,p′⊥)
CBD∗

Ai
(∆t,∆t ′;0,p′⊥)

→
εi jkε∗j v′⊥k

1+w
hV (w)
hA(w)

. (3.11)

We average CBD(∗)
Vi

and CBD∗
Ai

over i=1,2,3 with appropriately rotated p′ and p′6⊥ before calculating
the above ratios. Note that renormalization factors cancel even in the ratio (3.11) due to chiral
symmetry preserved in our simulations.

Figure 1 shows an example of the ratios for B→D∗. We confirm reasonable consistency
between two sets of data with different values of ∆t +∆t ′ suggesting that the excited state contami-
nation is sufficiently suppressed. The statistical accuracy with the smaller value of ∆t+∆t ′≈1.8 fm
is typically 2 – 6 % for h+, hA1 , hA3 , hV , which are reduced to the Isgur-Wise function ξ (w) with the

3
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Figure 2: Form factors as a function of w. We plot h+, h− and hA1 in the top-left, top-right and bottom-left
panels, respectively. The blue (red) symbols show data with mb = 1.252mc (1.254mc), whereas the open
(filled) symbols are at a−1'2.5 (3.6) GeV.

normalization ξ (1)=1 in the heavy quark limit mc,mb→∞. Other form factors h− and hA2 vanish
in the heavy quark limit, and their results are close to zero with a typical accuracy of .50 %.

Figure 2 shows results for h+, h− and hA1 at different simulation points as a function of w.
These form factors describe the differential decay rates at zero recoil dΓ/dw(B→D(∗)`ν)|w=1 for
the massless lepton m`= 0. These and other form factors mildly depend on a−1, mb and Mπ –
at least in our simulation range of these parameters. We note that similar mild dependence on
a−1 and mb is also observed for the B→π`ν form factors [11]. While all the form factors have
to be extrapolated to the continuum limit and physical up, down and bottom quark masses, the
mild dependence may suggest that the preliminary results are not far from these limits and the
extrapolation can be reasonably controlled.

4. Heavy quark symmetry violation and |Vcb|

The B→D∗`ν differential decay rate for m`=0 is described by three combinations of the form
factors, hA1 , hV and hA2 + rhA3 (r=MD∗/MB). Boyd, Grinstein and Lebed (BGL) proposed a model
independent parametrization [18], which Taylor-expands the (regularized) form factors around zero
recoil in w−1, or in terms of a small kinematical parameter z=(

√
w+1−

√
2a)/(

√
w+1+

√
2a)

with a a tunable input. While one can derive constraints on the expansion parameters from unitar-
ity, they are rather weak. The conventional determination of |Vcb| therefore employs the Caprini-
Lellouch-Neubert (CLN) parametrization [19], which has only four free parameters: the normaliza-
tion and slope of hA1 , R1(1)=hV (1)/hA1(1) and R2(1)={hA2(1)+ rhA3(1)}/hA1(1). The remaining
parameters are constrained by next-to-leading order (NLO) heavy quark effective theory (HQET)
with QCD sum rule inputs for the sub-leading Isgur-Wise functions. Recently, Belle has published
a preliminary analysis of the differential decay rate with unfolded kinematical and angular distri-

4
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Figure 3: Left panel: form factor ratios S1(1)/V1(1) (left-top panel), hA1(1)/V1(1) (left-middle panel) and
S1(1)/hA1(1) (left-bottom panel). These ratios are unity in the heavy quark limit, and the shaded region
shows the NLO HQET estimate [26]. Right panel: R1(w) as a function of w. The BGL and CLN fits shown
in the green and purple bands, respectively, are from Ref. [25] by courtesy of the authors. The inner panel
magnifies a small region around our lattice results. In all the panels, our results are plotted by the same
symbols as Fig. 2.

butions for the first time [20]1. This allows a determination based on the BGL parametrization
yielding |Vcb|×103= 41.7(+2.0

−2.1) [22] and 41.9(+2.0
−1.9) [23], which are compatible with the inclusive

determination 42.0(0.5) and slightly larger than 38.2(1.5) with the CLN parametrization [20]. This
led to recent phenomenological discussions about higher order correction to NLO HQET [24, 25].

In the left panel of Fig. 3, we compare form factor ratios between lattice QCD and NLO
HQET. We again confirm that our lattice results mildly depend on a−1, mb and Mπ . There seems to
be a systematic deviation for hA1/V1(1) and S1(1)/hA1(1), where V1=h+− (1− r)h−/(1+ r) and
S1=h+−(1+r)(w−1)h−/(1−r)(w+1) are vector and scalar form factors for B→D`ν . Note that
the CLN constraint on hA1 is derived from hA1(w)/V1(w) in NLO HQET and the unitarity bound
for V1(w) for B→D`ν [19]. Our observation suggests that NLO HQET may receive significant
higher order corrections as discussed in Ref. [24].

However, this seems not to be the case for R1(w), which exhibits one of the largest differences
between the CLN and BGL analyses [25]. The right panel of Fig. 3 shows that our results for R1(w)
favor the CLN prediction, though they eventually have to be extrapolated to the continuum limit
and the physical quark masses. These observations suggest that, at the moment, the |Vcb| tension
may not be simply attributed to the higher order corrections to NLO HQET, and more lattice data
are welcome for a more detailed comparison between the CLN and BGL analyses.

5. Outlook

In this article, we report on our study of the B→D(∗)`ν decays at zero and nonzero recoils.
With our simulation setup, the relevant form factors show mild dependence on a−1, mb and Mπ ,
which led us to discuss implication of the preliminary results to the |Vcb| tension. Our goal is to

1Reference [20] analyzes results with a tagged approach. We note that, after the conference, Belle updated their
analysis of B→D∗`ν with an untagged approach by using both the BGL and CLN parametrizations [21].
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obtain purely theoretical prediction for the form factors through lattice simulations and a model-
independent parametrization such as BGL towards a more reliable determination of |Vcb|. To this
end, we are planning to extend our simulation to a lighter pion mass Mπ∼230 MeV, a finer lattice
with a−1∼4.5 GeV and mb=1.255mc for a controlled extrapolation of our results to the continuum
limit and physical mud and mb. Our data at different mb’s are expected to be useful to test the heavy
quark scaling for the form factors given by heavy quark symmetry.

We are grateful for F.U. Bernlochner, Z. Ligeti, M. Papucci, and D.J. Robinson for mak-
ing their numerical results in Ref. [25] available to us. Numerical simulations are performed on
Oakforest-PACS at JCAHPC under a support of the HPCI System Research Projects (Project IDs:
hp170106 and hp180132) and Multidisciplinary Cooperative Research Program in CCS, Univer-
sity of Tsukuba (Project IDs: xg17i036 and xg18i016). This work is supported in part by JSPS
KAKENHI Grant Numbers 16K05320, 18H01216, 18H03710 and 18H04484.
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