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1. Introduction

Lattice QCD computations in the heavy-quark sector are essential for the search of New
Physics. Precise determinations of decay constants and form factors involved in charmed meson
decays are fundamental to monitor the consistency between the Standard Model predictions and
upcoming experimental results. In particular, an accurate computation of D-meson semileptonic
decay form factors is required to match the level of precision reached by experiments. We consider
a setup [1] aimed at addressing the leading systematic uncertainties in charm-quark observables.
In the sea sector, we employ a Lüscher-Weisz tree-level improved gauge action and an N f = 2+1
Wilson Dirac fermionic action [2], including the Sheikholeslami-Wohlert term [3]. The gauge en-
sembles considered in this work, see Table 1, were produced within the CLS initiative [4]. They lie
along a line of constant trace of bare quark mass matrix,

trMq = 2mq,`+mq,s = const , (1.1)

where mq,f = m0,f−mcr. In this way, cut-off effects proportional to Mq are constant for any quark
mass. In practice, it is beneficial to depart from the relation in eq. (1.1) involving bare quark masses
towards a renomalized chiral trajectory in terms of following dimensionless quantities,

φ2 = 8t0 m2
π , φ4 = 8t0

(
m2

K +
1
2

m2
π

)
, (1.2)

in units of the gradient flow scale t0. This mass shift in the u,d and s quark masses can be obtained
through a low order Taylor expansion [5]. Besides the ensembles laying over a chiral trajectory
that approaches the physical point, additional ensembles along a symmetric line with degenerate u,
d and s quark masses were generated at β=3.46 (see Table 1). Adopting open boundary conditions
in the time direction allows to improve the sampling of configuration space at fine values of the
lattice spacing [6, 7, 8].

We employ a mixed action approach where the sea sector consists of the just described CLS
setup while Wilson twisted mass fermions at maximal twist are used in the valence sector [1].
This setup is free from leading lattice artefacts proportional to the valence quark masses and is
therefore particularly useful for computations in the charm sector [10, 9]. In Section 2, we provide
a description of the valence quark action and of the two strategies used to match the sea and valence
quark masses. Numerical results for continuum-limit scaling in this setup are shown in Section 3,
while in Section 4 we provide additional evidence for the control of lattice artefacts and unitarity
violations in this mixed action approach.

2. Matching conditions

A chirally rotated mass term [11, 12, 13, 14, 15], µµµ000 = diag(µ0,`,µ0,`,µ0,s,µ0,c), is added to
the Wilson operator in the valence sector as follows:

1
2

3

∑
µ=0
{γµ(∇

∗
µ +∇µ)−a∇

∗
µ∇µ}+

i
4

acSW

3

∑
µ,ν=0

σµν F̂µν +mmm0 + iγ5 µµµ000 . (2.1)

Maximal twist is achieved by tuning on each ensemble the valence PCAC light quark mass,
mR

12

∣∣
v, to zero by a linear interpolation using a set of values of the valence hopping parameter
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Id β a[fm] Ns Nt mπ [MeV] mK[MeV] mπ L

H101 3.40 0.087 32 96 420 420 5.8
H102 3.40 0.087 32 96 350 440 4.9
H105 3.40 0.087 32 96 280 460 3.9

H400 3.46 0.077 32 96 420 420 5.2
H401 3.46 0.077 32 96 550 550 7.3
H402 3.46 0.077 32 96 450 450 5.7

N202 3.55 0.065 48 128 420 420 6.5
N203 3.55 0.065 48 128 340 440 5.4
N200 3.55 0.065 48 128 280 460 4.4
D200 3.55 0.065 64 128 200 480 4.2

N300 3.70 0.050 48 128 420 420 5.1
J303 3.70 0.050 64 192 260 260 4.1

Table 1: List of CLS Nf = 2+ 1 ensembles used in the present study. The second column corre-
sponds to the inverse bare coupling, β = 6/g2

0. In the third and fourth columns, Ns and Nt, refer to
the spatial and temporal extent of the lattice. Approximate values of the pion and Kaon masses are
provided [4, 5].

κ`|v. 1

Furthermore, in order to recover unitarity in the continuum limit, it is necessary to match the
sea and valence quark masses. In this work, two different procedures are analyzed: (i) matching
of the renormalized (u,d) and s quark masses and (ii) matching of the pion and kaon masses. The
first method [1] is based on the matching of the renormalised PCAC quark mass in the sea sector
to the renormalised twisted mass, µR

1

∣∣
v ≡ mR

12

∣∣
s. Including O(a) counterterms in the sea sector,

this matching reads,

1
ZP

µ1 ≡
ZA

ZP
m12|s

(
1+
(
b̃A− b̃P

)
a m12|s +

(
bA−bP

)
a tr Mq

∣∣
s

)
, (2.2)

where the renormalisation factor ZP can be ignored since it appears on both sides of the equation.
This method allows to tune to maximal twist with just a few simulations around mR

12

∣∣
v = 0 as

shown in Fig. 1. However, this approach relies on a determination of the mass-dependent b-type
improvement coefficients. 2 We employ the recent determination of ZA based on the chirally rotated
Schrödinger functional [16]. A similar matching condition as in eq. (2.2) is used for the strange
quark mass. An alternative way to match the light quark masses is given by the condition mπ |v ≡
mπ |s. This approach involves simulations on a grid of points in the (κ`|v,µ0,`) plane. The desired
values of κ`|v and µ0,` fulfilling, simultaneously, the matching and the maximal twist conditions
are obtained through interpolations over the grid of points. The grid can be efficiently chosen if the

1In what follows, the notation “|v” denotes the valence sector while “|s” refers to the sea sector. For quark masses,
the subscripts 1 and 2 refer to two distinct light-quark flavours with degenerate masses, m1 = m2, and the presence of a
superscript R denotes renormalised quantities.

2We employ the non-perturbative determination in Ref. [23]. Further perturbative and non-perturbative studies have
also appeared in Ref. [18] and Refs. [19, 20, 21], respectively.
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Figure 1: Illustration of the tuning to maximal twist by matching µR
1

∣∣
v ≡ mR

12

∣∣
s in ensemble N203.

values of the twisted and the standard masses are selected based on the previous matching method.
In such a small range of parameter space for (κ`|v,µ0,`), the valence PCAC quark mass and the
pseudoscalar mass squared can be parametrized through low order polynomials in κ`|−1

v and µ0,`: 3

m12|v (κ`|v,µ0,`) =
p1,1

2κ`|v
+ p1,2µ0,`+ p1,3 ≡ 0, (2.3)

m2
π

∣∣
v (κ`|v,µ0,`) =

p2,1

(2κ`|v)2 +
p2,2

2κ`|v
+ p2,3µ0,`+ p2,4 ≡ m2

π

∣∣
s . (2.4)

Although a larger set of simulations are required with respect to the matching of the quark masses
in eq. (2.2), a benefit of this procedure is that only O(a)-improved quantities appear in eqs. (2.4)
and (2.3). Furthermore, the availability of a grid of points allows to incorporate a refined analysis
of the mass-shifts towards a renormalised chiral trajectory. An example of the application is shown
in Fig. 2.
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(a) Valence PCAC quark mass as a function
of the twisted mass in the neighbourhood of
maximal twist for different values of κ`|v.
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(b) φ4 as a function of 1
2κ`|v

for different
values of the twisted mass. The horizontal
line indicates the matching point.

Figure 2: Illustration of the tuning to maximal twist by matching mπ |v ≡ mπ |s for the ensemble
N203.

3We notice that, in practice, φ4 and φ2 in eq. (1.2), are used to perform the matching of the sea and valence quark
masses.
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The strange quark masses can be matched by imposing mK |v ≡ mK |s. In the neighborhood of
the target strange quark mass, the valence kaon mass squared can be parametrized in the following
way

m2
K

∣∣
v (κ`|v,µ0,`,µ0,s) =

p3,1

(2κ`|v)2 +
p3,2

2κ`|v
+ p3,3µ0,`+ p3,4µ0,s + p3,5 ≡ m2

K

∣∣
s . (2.5)

3. Continuum-limit scaling and light-quark mass dependence

In Fig. 3a, we illustrate the continuum-limit scaling of fπK = 2
3

(1
2 fπ + fK

)
in units t0, where

the pion and kaon decay constants fπ and fK , respectively, were computed as described in [1].
Three different sets of points are shown. In the legend, "Wilson" points refer to different ensembles
at the symmetric point computed with the Wilson regularisation, whereas "Wtm" signals the use of
Wilson twisted mass fermions at maximal twist. WtmmPS and Wtmµ refer to the matching with the
pseudoscalar mass and the quark mass, respectively. Notice that the different datasets are slightly
shifted in the horizontal axis so they can be visualized. This quantity exhibits a mild dependence
on the matching condition and, furthermore, shows the agreement in the continuum limit among
the two regularisations.

The quantity fπK , normalized by its value at the symmetric point, shows a quadratic depen-
dence on φ2, up to logarithmic corrections, as discussed in [5]. The light quark mass dependence of
fπK
f sym
πK

computed with the Wtm regularisation by employing the matching with pseudoscalar meson
masses, is shown in Fig. 3b for three ensembles at a fixed value of the lattice spacing, a = 0.064 fm.

Figures 3c and 3d show the continuum-limit scaling of the RGI quark mass and of φ4, respec-
tively. A comparison of the results for the Wilson and twisted regularisation using the two different
matching procedures explained above are displayed. The renormalisation and running of the quark
mass in both regularisations are based on Ref. [17]. Our results indicate that the difference between
both matching procedures decreases for finer values of the lattice spacing.

4. Additional checks of the mixed action

The mass splitting between the charged and neutral connected pions in units of the Sommer
parameter r0 measures the isospin breaking effects induced by the valence regularisation. Although
both masses coincide in the sea, the twisted mass valence action introduces a splitting proportional
to the scale of O(a2) lattice artefacts. In Fig. 4, we compare our measurements of pion mass
splitting at different values of the lattice spacing to various determination with different lattice
actions [22, 24]. This Figure indicates that the isospin breaking effects in our mixed action setup
are on the same ballpark as those from other lattice regularisations.

5. Conclusions

We have described two matching conditions of sea and valence quark masses of a mixed action,
based on renormalized quark masses and on pseudoscalar meson masses. Preliminary results for
the continuum-limit scaling for fπK and mR

12 in terms of t0 are presented together with additional
consistency checks of the mixed action
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(a) Continuum extrapolation of fπK for symmetric
point ensembles.

0 0.2 0.4 0.6 0.8

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

(b) Light quark mass dependence of fπK at β =

3.55.
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(c) Continuum extrapolation of the light quark mass
for symmetric point ensembles.
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(d) Lattice spacing dependence of φ4 for symmetric
point ensembles.

Figure 3: Comparison of results based on the Wilson and on the twisted mass regularisatios using
two matching procedures (WtmmPS and Wtmµ ).

The tuning procedure for the pseudoscalar mass matching requires simulating a grid of points
in the plane of the bare standard mass and the twisted mass. In practice, this method also allows to
shift the valence masses to a family of renormalised chiral trajectories of sea quark masses.

The pseudoscalar mass matching procedure is beneficial since it relies on quantities which
are free from O(a) effects. Our preliminary results show that the overall difference between our
matching procedures becomes smaller as the lattice spacing is reduced.
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Figure 4: Comparison of the mass splitting between the charged and the neutral connected pions
for various lattice actions [22, 24]. Notice that only a small subset of the available configurations
were used in this preliminary study .
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