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1. Introduction and Motivation

The Landau gauge gluon propagator has been intensively studied using lattice simulations in
the past recent years. The picture emerging being a propagator that at small momenta is finite,
therefore suppressed relative to the perturbative calculation, and non-vanishing at zero momentum.
These results can be understood as due to the dynamical generation of mass scales, that can also be
interpreted as a running gluon mass, that regulate the would-be infrared singularities [1, 2, 3, 4, 5,
6,7,8,9].

The interpretation of the lattice gluon propagator needs a proper non-perturbative quantisa-
tion of the Yang-Mills theories, a problem not yet completely solved due to the presence of the
so-called Gribov copies [10]. An improvement over the standard construction of the Green’s func-
tion generating functional, i.e. the Faddeev-Popov trick [11], that resulted in a local renormalized
action was suggested in [12] and lead to the construction of a family of actions named generally
Gribov-Zwanziger actions; for a review see e.g. [13] and references therein. These actions intro-
duce mass scales that regulate the Yang-Mills theory at low energy. Indeed, as discussed in [2, 5, 9],
the Refined Gribov-Zwanziger action and the Very Refined Gribov-Zwanziger action [14, 15] are
compatible with lattice simulations if not over the full range of momenta, at least for momenta
up to ~ 1 GeV, i.e. for the two point correlation function they provide analytical results that are
compatible with the low energy behaviour of the gluon propagator observed in lattice simulations.

The initial studies of the lattice simulations versus Gribov-Zwanziger action had a relatively
small statistics, typically the number of configurations per ensemble being of the &/(100) or smaller.
The question we would like to address here being if the early studies [2, 5] results are still valid
when one increases significantly the number of configurations per ensemble. In order to try to
answer it, we consider two large physical volume lattice simulations performed with § = 6.0, that
corresponds to a lattice spacing of a = 0.1016(25) fm (1/a = 1.943 GeV) measured from the
string tension, and for 64* and 80* lattices, whose physical size being L = 6.57 fm and L = 8.21
fm, respectively. For the simulation using the smaller physical volume we consider an ensemble
with 2000 gauge configurations rotated to the Landau gauge, while for the largest physical volume
the ensemble has 550 gauge configuration rotated to the Landau gauge. Herein, we resume the
results reported in [9], where the reader can find further details on the calculation. Besides the
investigation of the compatibility of the Gribov-Zwanziger functional form with the high precision
lattice data, we also address the question of extending the predicted functional forms to cover the
full range of momenta accessed in lattice simulations, while keeping the right perturbative tail in
the ultraviolet regime.

In the Landau gauge, the gluon propagator is defined as

(AS(P") AY(p)) =V 8 8(p'+ p) Puv(p) D(P?) | (1.1)

where p,, = (27 /aLl)n, withny, =0,---,L— 1 is the lattice momentum, p = (2/a) sin(wny /L) is
the so-called continuum momentum, Py (p) is the orthogonal projector and V = L* is the lattice
volume. All the lattice data reported is renormalised in the MOM-scheme, where D(p?) }pzzﬂz =
1/u? , and we have used 4 = 3 GeV as renormalisation scale.
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2. Refined Gribov-Zwanziger, Very Refined Gribov-Zwanziger and Lattice Data

The tree level prediction of the Refined Gribov-Zwanziger for the gluon propagator being

PP M

2.1
P+ M p? My ey

D(p*) =2

and, in order to study the compatibility of this expression with the lattice data, we perform a corre-
lated fit taking into account the lattice data for momenta in [0, pju.| and change p;,, monitoring
the corresponding value of the ¥2/d.o.f. Furthermore, in the fits we consider two cases, where Z is
left as a free parameter and where we set Z = 1. The fits for a y?/d.o.f. <2 can be seen on Tab. 1.
For the simulation using the smaller physical volume one can claim a

Z=1.088(58) M?=2.16(22) M32=0.478(21) M5 =0261(13) Pmax = 1.00
Z=1 M? =2.521(28) M?=0.5082(90) M3 =0.2795(27) Pmax = 1.00

where all quantities are given in powers of GeV. For the simulation using the larger physical volume

one gets
Z=0.957(66) M;=2.73(34) M3;=0.527(29) M5 =0.290(16) Pmax = 1.10
Z=1 M} =2.525(36) Mj;=0.510(11) M3 =0.2803(34) Pmax = 1.10

where all quantities are measured in powers of GeV. The fitted parameters are in good agreement
for the two simulations, with the case where Z = 1 producing closer results for the two physical
volumes. The weighted average of the fitted parameters results in Z = 1.027(44), M} = 2.38(19)
GeV?, M3 = 0.499(17) GeV? and M§ = 0.274(10) GeV* or Z = 1, M} = 2.523(22) GeV?, M3 =
0.5090(70) GeV2, M3 = 0.2799(21) GeV*.

We conclude confirming the results of [2, 5] now for a high statistical calculation that the
tree level refined Gribov-Zwanziger prediction for the gluon propagator is compatible with the low
energy lattice data up to momenta p ~ 1 GeV.

The tree level prediction of the Very Refined Gribov-Zwanziger action for the gluon propagator
reads

D) = p“;LMf pPMy 22)
p°+M;s p* —FMf‘1 p? —i—M36
As discussed in [9], we have observed that the fitting range where (2.2) is compatible with the lat-
tice data covers essentially the same range of momenta, i.e. p € [0, 1] GeV. Furthermore, the fitted
parameters are such that M§ ~ 0 GeV* and Mg’ ~ 0 GeV® and (2.2) reduces to (2.1) with the pa-
rameters (M7, M2, M) appearing in (2.2) reproducing, within errors, the parameters (M7, M3, M5)
that define (2.1). The reducing of (2.2) to (2.1) suggests that the condensate named p in [9] is real.

3. Reproducing the Full Range of Momenta

If the infrared lattice data is well described by the Refined Gribov-Zwanziger type of propa-
gator, how can one extend this functional form to cover the full range of lattice momenta, without
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Figure 1: Lattice data together with the global fit mentioned in the text.

compromising the perturbative tail at high momenta? In order to achieve such goal, we assume that

2 20,2
+m

AQCD

the gluon propagator is given by

¥4
P’ +M '

pH+M; 4 My

D(p*) =2 : 3.1)

where @ = 1IN a(u)/12m, ag(u) is the strong coupling constant at the renormalisation scale
U, Yo = —13/22 is the one-loop gluon anomalous dimension and m§ (p?) is a running mass that
regularises the log function, such that the Gribov-Zwanziger expression is recovered for momenta
p < 1GeV and at high momenta D(p?) reproduces the one-loop renormalisation improved result.
In our study we take the MOM-scheme where o (3 GeV) = 0.3837, see [16], and following
the works [17, 18, 19] we set Agcp = 0.425 GeV for the pure Yang-Mills theory. Note that in
this way the only fitted parameters are Z, M?, M%, Mg‘ and those that parametrise the regularisation
mass m3(p?).
We have tried several functional forms for the regularisation mass, see [9] for further details,
and our best fit used
mg

Y (3.2)

my(p*) = Ag +
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and resulted in x2/d.o.f. = 1.11 with Z = 1.36992(72), M? = 2.333(42) GeV?, M7 = 0.514(24)
GeV?, M§ = 0.2123(32) GeV*, m§ = 1.33(13) GeV?, 12 = 0.100(35) GeV? and A} = 0.954(70)
GeV? for the smaller lattice volume, which had the ensemble with the higher number of configura-
tions. The lattice data together with the fit just mentioned can be seen on Fig. 1. We call the reader
attention to the good agreement between the values for M7, M% and M§L obtained in the global fit
and those reported in the previous section.

For the global fit discussed here, D(p?) predicts a pair of complex conjugate poles at p> =
—0.257 4+ 0.382 GeV? and a pair of complex conjugate branch points at momenta p?> = 0.43 +
i 1.02 GeV?. If the pair of complex conjugate poles are associated with momenta whose real part is
negative and the values of the poles are essentially independent of the regularisation mass mf]( %),

the computed branch points show a strong dependence on the model used for mé (p?).

4. Results and Conclusions

Our results show that the tree level propagator associated with Refined Gribov-Zwanziger
action and the Very Refined Gribov-Zwanziger action are compatible with the lattice data up to
momenta ~ 1 GeV. In particular the results for the Very Refined Gribov-Zwanziger action translate
into a constraint on the condensates of the theory. From the point of view of the theory, it would
be interesting to have high order predictions for the Landau gauge gluon propagator to be tested
against high precision simulations.

Our analysis also provide a global fit that results in a propagator with a pair of complex con-
jugate poles and a pair of complex conjugate branch points. If the poles seem to be robust against
the logarithmic regularisation mass, the same does not apply to the location of the branch points.
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L Pmax V z M? M3 M3

64 050 184 22+13 0.57+£0.78 0.421+£0.045 0.14£0.11

64 070 112 1.50+0.17 1.19+£0.28 0.417£0.027 0.20040.025
64 080 114 1.3940.17 1.40+£0.34  0.43240.028 0.21640.025
64 090 114 1.199+0.084 1.82+£0.25 0.458+0.022  0.243+0.015
64 1.00 122 1.088+0.058 2.164£0.22  0.478+0.021 0.261+£0.013
64 1.10  1.83 0.959+0.062  2.67+032  0511£0.026  0.285+0.015
80 050 045 2.69+0.35 0.2540.13 0.362+£0.012  0.07740.028
80 070  1.07 1.62+0.19 1.034+0.28 0.408 £0.033 0.186+£0.029
80 080  1.04 1.48+0.17 1254030  0.428+£0.033 0.206 +0.027
80 090  1.03 1.36+0.13 1.48£0.29 0.447+£0.030  0.224+0.022
80  1.00  1.11 1.07540.087 2.26+0.34  0.500£0.029  0.269+0.018
80  1.10  1.16 0.9574+0.066  2.73+£0.34  0.527£0.029  0.290+0.016
80 125 134 0.8324£0.062  3.42+044  0.565+0.031 0.315+0.016
80 1.50 139 0.723+0.037  4.29+0.37 0.610£0.026  0.341£0.012
80 175 131 0.694+0.018 4574022  0.626+0.018 0.3493+0.0074
80 200 131 0.697+0.015 4.544+0.19 0.624+£0.017 0.3485+0.0066
80 225 131 0.708+0.010  4.41+0.13 0.614+£0.014  0.344140.0051
80 250 140 0.7241£0.0075 4.22+0.10  0.598+£0.012  0.3375:£0.0042
80 275  1.38 0.7288+£0.0063 4.167+£0.087 0.593+£0.011 0.335440.0038
80  3.00 131 0.7296+0.0043 4.157+£0.066 0.59224+0.0097 0.33500.0031
64 050 158 1 2.31+0.25 0.4524+0.059  0.257+£0.028
64 070 136 1 2.47240.052  0.494+0.015 0.2745 £0.0053
64 080 129 1 2.469+0.049  0.494+0.015 0.2743 £0.0049
64 090 136 1 2.515+£0.040 0.506+0.012  0.278940.0040
64 100 129 1 2.521+£0.028  0.5082£0.0090  0.2795+0.0027
64 119 177 1 2.478£0.027  0.4955+£0.0089  0.275240.0026
80 050 061 1 1.96+0.14  0.378+£0.033 0.22040.015
80 070 115 1 2.531+£0.064 0.5124£0.019  0.2809+0.0064
80 080 115 1 2.554+£0.060 0.519+0.018 0.2832£0.0060
80 090 115 1 2.578£0.056  0.526+0.017 0.2857 £0.0055
80 1.00 109 1 2.566+0.044 0.522+£0.014  0.284540.0043
80 1.10 114 1 2.525+0.036  0.5104+0.011 0.2803 £ 0.0034
80 125  1.60 1 2.454+0.035 0.489+0.011 0.2733+£0.0034

Table 1: Fits to the Refined Gribov-Zwanziger functional form Dggz(p?). The upper part refers to the fits
have Z as a free parameter, while in the lower part of the table Z = 1. v refers to the y/d.o.f. For the
smaller lattice (larger ensemble) we only show fits with a v < 2. All parameters are in powers of GeV.



