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Dynamical Dark Matter (DDM) is an alternative framework for dark-matter physics in which the
dark sector comprises a vast ensemble of particle species whose Standard-Model decay widths are
balanced against their cosmological abundances. Previous studies of this framework have focused
on a particular class of DDM ensembles in which the density of dark states scales roughly as a
polynomial of the mass. In this talk, by contrast, we discuss the properties of DDM ensembles in
which the density of dark states grows exponentially with mass, as appropriate if the dark-sector
constituents are the “hadronic” resonances associated with the confining phase of a strongly-
coupled dark sector. We find that rather generic cosmological constraints introduce non-trivial
correlations between the mass scales, lifetimes, and abundance distributions associated with these
DDM ensembles. For example, we find that such DDM ensembles can exhibit energy scales rang-
ing from the GeV scale all the way to the Planck scale, but that the total present-day cosmological
abundance of the dark sector must be spread across an increasing number of different states in the
ensemble as these energy scales are dialed from the Planck scale down to the GeV scale. This
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1. Introduction

Dynamical Dark Matter (DDM) [2, 3] is an alternative framework for dark-matter physics
in which dark-matter stability is not required. Instead, the dark sector within the DDM frame-
work comprises a vast ensemble of individual constituent particles exhibiting a variety of different
masses, lifetimes, and cosmological abundances such that those ensemble constituents with shorter
lifetimes must have smaller cosmological abundances, while states with longer lifetimes may have
larger cosmological abundances. As a result, the dark sector in such a scenario is dynamic: states
in the dark sector are continually decaying into visible-sector states throughout the evolution of
the universe — not just in previous epochs but even at the present time and into the future. Many
methods have been developed for testing this framework, spanning from collider signatures [4, 5]
to signatures in direct-detection [6] and indirect-detection [7, 8, 9] experiments.

Many of the phenomenological properties of these DDM ensembles depend on the manner in
which the lifetimes and abundances of ensemble constituents scale with respect to each other. One
general class of DDM ensembles are those whose constituents are the Kaluza-Klein (KK) modes
of a gauge-neutral bulk field in a theory with extra spacetime dimensions in which cosmological
abundances are established through misalignment production [2]. Indeed, explicit realizations of
DDM ensembles of this type have been constructed [3, 10]. In such ensembles, the cosmological
abundance of each component scales as a power of the lifetime of that component. Likewise, the
density of states within such ensembles is either insensitive to mass or scales roughly as a poly-
nomial function of mass across the ensemble. Polynomial scaling relations also emerge in other
(purely four-dimensional) contexts as well. For example, under certain circumstances, thermal
freeze-out mechanisms for abundance generation can also lead to appropriate polynomial inverse
scaling relations between lifetimes and abundances [11]. In fact, such inverse scaling relations
can even emerge statistically in contexts in which the dynamics underlying the dark sector is es-
sentially random [12]. For these reasons, most phenomenological studies of the DDM framework
have focused on ensembles exhibiting polynomial scaling relationships.

There are, however, other well-motivated theoretical constructions which do not give rise to
dark sectors with polynomial scaling relations. One example is a dark sector consisting of a set of
fermions (dark “quarks”) charged under a non-Abelian gauge group G which becomes confining
below some critical temperature Tc. At temperatures T . Tc, when the theory is in the confining
phase, the physical degrees of freedom are composite states (dark “hadrons”). Such ensembles
have two fundamental properties:

• mass distributions which follow linear Regge trajectories (i.e., α ′M2
n ∼ n where α ′ is a cor-

responding Regge slope), and

• exponentially growing (“Hagedorn-like”) degeneracies of states (i.e., gn ∼ e
√

n ∼ e
√

α ′Mn).

These features — especially the appearance of an exponential scaling of the state degeneracies with
mass — represent a behavior which is markedly different from that exhibited by DDM ensembles
with polynomial scaling relations. In this paper, we shall study the generic properties of DDM
ensembles which exhibit the two features itemized above.
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2. Our framework: Fundamental assumptions

As discussed above, the first feature that we shall assume of our hadronic dark sector is a mass
spectrum consistent with the existence of Regge trajectories. The existence of such trajectories fol-
lows directly from our assumption that our dark-sector bound states can be modeled by dark quarks
connected by the confining flux tube associated with a strong, attractive, dark-sector interaction.
Taking meson-like configurations as our guide, it can easily be shown that the mass Mn associated
with a relativistic rotating flux tube scales with the corresponding total angular momentum n as
n∼ α ′M2

n , where α ′ is the so-called Regge slope. In the visible sector, this successfully describes
the so-called leading Regge trajectory of the observed mesons, with α ′ ∼ 1 (GeV)−2 appropriate
for QCD. Moreover, there also exist subleading (parallel) Regge trajectories of observed mesons
which have the same Regge slope but different intercepts: n ∼ α ′M2

n +α0. We shall thus assume
that the states of our dark “hadronic” DDM ensemble have discrete positive masses Mn

M2
n = nM2

s +M2
0 . (2.1)

where the index n labels our states in order of increasing mass. Here Ms ≡ 1/
√

α ′ is the corre-
sponding “string scale”, while M0 represents the mass of the lightest “hadronic” constituent in the
DDM ensemble. We shall avoid making any further assumptions about the nature of the dark sector
by treating both Ms and M0 as free parameters to be eventually constrained by cosmological data.

The second generic feature associated with hadronic spectroscopy is the well-known expo-
nential rise in the degeneracies of hadrons as a function of mass: gn ∼ e

√
n. In general, we can

understand this behavior as follows. If we model our dark hadrons as dark quarks connected by
flux tubes, the degeneracy gn of hadronic states at any mass level n can be written as the product of
two contributions: one factor κ representing a multiplicity of states due to the degrees of freedom
associated with the dark quarks (such as the different possible configurations of quantities like spin
and flavor), and a second factor ĝn representing the multiplicity of dark states due to the degrees of
freedom associated with the flux tube. We thus have

gn ≈ κ ĝn . (2.2)

While the constant κ is independent of the mass level n, the remaining degeneracy factor ĝn counts
the rapidly increasing number of ways in which a state of given total energy n can be realized as a
combination of the vibrational, rotational, and internal excitations of the different harmonic oscil-
lators which together describe the quantized flux tube. It is this quantity which grows exponentially
with mass, and in this work we shall generally take ĝn for all n≥ 1 to be given as [1]

ĝn = 2π

(
16π2n

C2 −1
) 1

4−B

I|2B− 1
2 |

(
C

√
n− C2

16π2

)

≈ 1√
2

(
C
4π

)2B−1

n−BeC
√

n as n→ ∞ (2.3)

where B and C are free parameters which describe the physics of the flux tube. In the first line
of Eq. (2.3), Iν(z) denotes the modified Bessel function of the first kind of order ν . Use of the
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approximation Iν(z)≈ ez/
√

2πz for z� 1 then reproduces the result on the second line of Eq. (2.3).
For n = 0, by contrast, we shall define ĝ0 ≡ 1, representing the unique ground state of our flux tube.

Clearly the most salient property of the expression in Eq. (2.3) is that it rises exponentially
with

√
n, or equivalently with the mass Mn of the corresponding state. This is ultimately because

the degrees of freedom associated with our flux tube include so-called oscillator excitations repre-
senting the internal fluctuations of the flux tube itself. It is the multitude of oscillator excitations
which give rise to the exponentially growing degeneracies.

Thus far, we have introduced four parameters to describe our dark “hadron” DDM ensemble:
Ms, M0, B, and C. The first two parameters have immediate interpretations: M0 is the mass of
the lightest state in the DDM ensemble, while Ms parametrizes the splitting between the states.
However B and C can also be understood physically. In general, we can describe the dynamics of
any flux tube propagating in a spacetime of effective dimensionality D through an action whose
leading behavior is described through the Polyakov action:

S ∼ M2
s

∫
d2

σ

D⊥

∑
i=1

(
∂

∂σα
X i
)(

∂

∂σα

X i
)

+ ... (2.4)

Here the D⊥ embedding functions X i(σ1,σ2), i = 1, ..,D⊥, are the transverse spacetime locations
of any point on the flux-tube surface with coordinates (σ1,σ2). Minimizing this action is classically
equivalent to minimizing the area of the flux-tube worldsheet. In general, one may parametrize the
total numbers of degrees of freedom for such an action in terms of a quantity known as the central
charge c, where cint = c−D⊥ parametrizes the number of degrees of freedom associated with
whatever extra terms might appear in the action beyond those explicitly shown in Eq. (2.4). One
then finds a relatively straightforward connection between the parameters (B,C) appearing in our
state degeneracies and the parameters (D⊥,c) of our underlying flux-tube theory [1]:

B =
1
4
(3+D⊥)

C = π
√

2c/3 . (2.5)

We shall allow D (and by extension D⊥) to be arbitrary in order to account for a range of general
theoretical possibilities discussed in Ref. [1]. Likewise, the parameters B and C are subject to
certain self-consistency constraints which are also discussed in Ref. [1].

Finally, we must make certain assumptions about the cosmological abundances Ωn and decay
widths Γn that are associated with these ensemble states. We have been imagining that these dark
“hadrons” emerge as the result of a dark-sector confining phase transition triggered by the strong
interactions of some dark-sector gauge group G. This phase transition occurs when the temperature
T in the dark sector drops below the critical temperature Tc associated with this phase transition.
This event marks the time tc at which the primordial abundances of our individual hadrons are
established. Moreover, it is reasonable to assume that residual G interactions establish thermal
equilibrium among these hadrons at T ∼ Tc. Thus, the primordial abundances Ωn of our hadrons
can be assumed to follow a Boltzmann distribution at t = tc:

Ωn(tc)≡
ρn(tc)

ρcrit(tc)
=

1

3M̃2
PH(tc)2

∫ d3p
(2π)3 Ep e−Ep/Tc (2.6)
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where Ep ≡
√

p ·p+M2
n and ρcrit(t) ≡ 3M̃2

PH(t)2 where M̃P ≡ MP/
√

8π = 1/
√

8πGN is the re-
duced Planck mass and H(t) the Hubble parameter. We shall require that Tc/Ms ≤ 1/C in order
to have a finite total abundance for the ensemble as a whole. We shall also henceforth assume
that Tc,Ms,M0 > TMRE where tMRE and TMRE are the time and temperature associated with matter-
radiation equality. This assumption, which parallels what occurs for the hadrons of the visible sec-
tor, ensures that our abundances Ωn(t) are established during the radiation-dominated era prior to
matter-radiation equality and that all ensemble constituents have become effectively non-relativistic
by tMRE. Of course, the expression in Eq. (2.6) describes the abundance of each constituent at the
time tc. This quantity then evolves in time due to the Hubble expansion of the universe and the
possible decay of the constituent.

Turning now to the decays of our ensemble constituents, we immediately recognize that there
are two kinds of decays that might be relevant. First, there are decays within the dark sector,
wherein a heavy dark state decays to lighter dark states within the ensemble. Such intra-ensemble
decays depend on the dark-sector coupling and could lead to highly non-trivial phase-space dis-
tributions for the lightest remaining dark-matter states. This could potentially alter cosmological
structure formation and the resulting matter power spectrum. By contrast, there can be decays out
of the dark sector and directly into Standard-Model (visible) states. Such decays depend on the
coupling between the dark and visible sectors, and could potentially cause difficulties with BBN
and/or CMB constraints, and/or leave undesirable imprints in photon/X-ray spectra.

In this paper, we shall assume that the net injection of energy density in the form of radiation
from dark-sector decays has a negligible effect on the total radiation-energy density of the uni-
verse. Second, we shall further assume that the contribution to the total decay width Γn of each
ensemble constituent from intra-ensemble decays is negligible. In other words, we shall assume
that Γn is dominated by decays to visible-sector final states which do not include lighter ensemble
constituents. We shall discuss this assumption further in the Conclusions. Third, we shall assume
that all states at a given mass level n share a common decay width Γn, and that this width scales
with n across our dark-hadron ensemble according to

Γn = Γ0

(
Mn

M0

)ξ

(2.7)

where Mn are the dark-hadron masses in Eq. (2.1) and where Γ0 and the scaling exponent ξ > 0 are
taken to be additional free parameters. Finally, for simplicity, we shall imagine that all states with
lifetimes τn ≡ 1/Γn indeed actually decay at t = τn.

3. Cosmological constraints on the dark-hadron ensemble

We now describe three quantities which ultimately play very important roles in characterizing
and constraining such dark-hadron DDM ensembles.

The first property of a given dark-hadron DDM ensemble that shall concern us is its total
abundance Ωtot(t)≡ ∑

∞
n=0 gn Ωn(t). However, we are also interested in tracking the distribution of

this total abundance among the individual ensemble constituents. For this purpose we shall also
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define [2] a so-called “modified tower fraction” 0≤ η(t)< 1 as

η(t) ≡ 1− maxn{Ω̂n(t)}
Ωtot(t)

(3.1)

where Ω̂n(t)≡ gnΩn(t) is the aggregate cosmological abundance arising from all states at oscillator
level n. Thus η ≈ 0 signifies a dark sector resembling traditional single-component dark matter
(where the “single component” corresponds to the degenerate states at the dominant mass level),
while η > 0 indicates (and quantifies) a “DDM-like” departure from this traditional scenario, one
in which states at all mass levels contribute non-trivially in shaping the properties of the dark sector.

Finally, the third important quantity which can be taken to characterize our dark sector is
the so-called equation-of-state parameter w. For a single-component dark sector, this is the ratio
between the pressure p and energy density ρ of the dark component: p = wρ . However, we are
dealing here with a multi-component dark sector in which each component has its own individual
lifetime and abundance. As a result, the total energy density and pressure associated with our dark
sector will generally experience a rather non-trivial time dependence which causes our ensemble
as a whole to behave collectively as if it had a non-trivial w — even if each individual component
is taken to be pure matter with w = 0. To describe these collective effects, we therefore define [2]
an effective equation-of-state parameter weff(t) which describes the behavior of our ensemble as a
single collective entity:

weff(t) ≡ −
(

1
3H

d logρtot

dt
+1
)

= − t
2Ωtot

dΩtot(t)
dt

. (3.2)

Here H is the Hubble parameter and ρtot = 3M̃PH2Ωtot is the total energy density of the ensemble.
Note that the definition in Eq. (3.2) is nothing but the usual definition of w prior to any assump-
tions of dark-sector minimality. By contrast, the second equality applies only during the present
matter-dominated epoch, within which H(t) ≈ 2/(3t). Note that even though each of the indi-
vidual components of our ensemble has been taken to be matter-like (with w = 0), the collective
equation-of-state parameter weff(t) for our ensemble as a whole is positive, reflecting the fact that
the ensemble as a whole is continually losing abundance as its individual components decay.

Given these quantities, we can impose certain “zeroth-order” cosmological/astrophysical con-
straints. These will enable us to obtain an initial sense of those parameter-space regions in which a
DDM dark-hadron ensemble might have at least the potential of phenomenological viability.

First, we shall demand that Ωtot(tnow) = ΩCDM ≈ 0.26, a requirement predicated on the as-
sumption that our dark-hadronic ensemble represents the totality of the dark sector. Second, we
shall also constrain the the time-variation of Ωtot(t) using information about the dark-matter abun-
dance during different cosmological epochs. For example, CMB data provides information about
the dark-matter abundance around the time of last scattering — i.e., at a redshift z≈ 1100, or equiv-
alently a time of roughly 2.7×10−5tnow. On the other hand, observational data on baryon acoustic
oscillations and the relationship between luminosity and redshift for Type Ia supernovae provide
information about H(t) and the dark-energy abundance ΩΛ at subsequent times, down to redshifts
of around z≈ 0.5. Within the context of the ΛCDM cosmology, the agreement between these dif-
ferent measurements implies that the dark-matter abundance has not changed dramatically since
the time of last scattering. In order be consistent with this result, we shall therefore demand that
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the total abundance of our DDM ensemble not vary by more than 5% between an early “look-back”
time tLB and today:

Ω(t)−Ω(tnow)

Ω(tnow)
≤ 0.05 for all tLB ≤ t ≤ tnow . (3.3)

In what follows, we shall take tLB = 10−6tnow, comfortably before the recombination epoch. We
can also place a bound on the rate of change of the total dark-matter abundance within the very
recent past — i.e., for redshifts in the range 0 . z . 3. Specifically, we shall impose an additional
constraint on our effective equation-of-state parameter: weff(tnow)≤ 0.05. Finally, we shall demand
that M0 >∼O(103)TMRE ≈O(keV) in order to satisfy BBN and structure-formation constraints.

We shall also make two simplifying assumptions. First, for concreteness, we shall restrict our
attention to situations with ξ = 3, corresponding to decay widths which scale as Γn ∼M3

n/Λ2, as
appropriate for situations in which the decay products are extremely light compared to Mn. Such
widths dominate the decays of our DDM constituents in scenarios in which our DDM ensemble is
uncharged with respect to all Standard-Model symmetries, and in which intra-ensemble decays can
be neglected. Likewise, we shall also make the simplifying assumption that κ = 1 in Eq. (2.2). This
restricts us to the bare “minimal” case in which we do not ascribe non-trivial degrees of freedom to
our dark-sector quarks, and thereby focus exclusively on the ensemble of states generated by our
infinite tower of hadronic resonances.

4. Results

We begin by adopting the “benchmark” values (B,C) = (5/4,2π/
√

3) and define the dimen-
sionless variables r ≡ M0/Ms and s ≡ Tc/Ms. We then find the results shown in Fig. 1. It is
immediately clear from these results that there is a “sweet spot” within the (r,s) parameter space,
lying roughly within the range

“sweet spot” : 1 <∼ r <∼ 6 , 0.05 <∼ s <∼ 0.18 . (4.1)

Within this region, all of the constraints discussed above are satisfied. Moreover, within this region
we see that Ms varies from the keV/MeV-range all the way to the Planck scale. Likewise, η(tnow)

varies through all of its possible values. This is therefore not only an allowed region, but one which
is likely to be exceedingly rich in phenomenology. Indeed, within this region, we observe from
the left panel of Fig. 1 that η(tnow) increases if either r or s is increased, while Ms increases in the
former case but decreases in the latter. Likewise, from the right panel, we see that Ms increases
extremely rapidly as a function of r/s. Fujrthermore, increasing the value of r/s while holding r
fixed tends to decrease the value of η(tnow). Thus, for fixed r, we find that Ms and η(tnow) tend
to vary inversely with respect to each other as functions of r/s, with our ensembles becoming less
DDM-like at higher mass scales and more DDM-like at lower mass scales. All of these results can
easily be understood physically [1].

We now examine the characteristics of the corresponding ensembles. As discussed above, the
most relevant aggregate properties of any dark-sector ensemble are its total cosmological abun-
dance Ωtot(t) and its effective equation-of-state parameter weff(t), both of which is generally time-
dependent. We can therefore examine how each of these quantities evolves with time for ensem-
bles in and near our sweet spot. This information is shown in Fig. 2. In this figure, we consider
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Figure 1: A survey of physics in the (r,s) plane, with B, C, and τ0 set to the “benchmark” values shown.
Left panel: The thin black line labeled ‘1’ indicates the contour with r/s = 1; this is thus the dividing line
between the region in which the lightest state is relativistic (left of this line) versus non-relativistic (right of
this line). The blue curves indicate contours of η(tnow), while the magenta lines indicate contours of Ms and
are labelled by the value of log10(Ms/GeV). The red region is excluded by look-back and weff constraints,
while the pale green region is excluded by the constraint M0 >∼ O(keV) which is saturated along the single
green contour. Increasing (decreasing) the value of τ0 does not affect the Ms or η(tnow) contours, and simply
shifts the red exclusion region to the left (right). Right panel: Same as left panel, but with features plotted
relative to r and r/s. The entire region shown in this panel corresponds to the non-relativistic case.

a “benchmark” ensemble with B = 5/4, C = 2π/
√

3, r = 3.5, s = 3.5/30, and τ0 = 109tnow, as
well as nearby ensembles in which either r (top row) or s (bottom row) is varied. In each case,
we plot the corresponding total cosmological abundance Ωtot (left column) and equation-of-state
parameter weff (right column). Note that in each case the overall abundance is normalized through
an appropriate choice of Ms such that Ω(tnow) = ΩCDM ≈ 0.26, as required.

In each panel of Fig. 2, the blue curve corresponds to our “benchmark” point. We therefore
begin by focussing on these benchmark curves. The curve for Ωtot(t) appears nearly constant at
ΩCDM ≈ 0.26 for all of the cosmological history plotted (which we assume to have been matter-
dominated), including the present time tnow. Indeed, this behavior continues all the way into the
future until t ≈ 109tnow, at which point Ωtot(t) begins to decline gently to Ωtot = 0. This behavior is
matched by weff(t), which remains near zero for most its cosmological evolution before gently ris-
ing to weff > 0 at t ≈ 109tnow. This makes sense, since weff(t) is proportional to the time-derivative
of Ωtot(t). If this has been a traditional ensemble with a single dark-matter component whose decay
we could model as essentially instantaneous (just as we are assuming for the individual components
of our dark-matter ensembles), our curve for Ωtot(t) would have been fixed precisely at its present
value ΩCDM ≈ 0.26 over the entire range shown until suddenly dropping (essentially discontinu-
ously) to Ωtot = 0 when the single dark-matter particle decays at t ≈ 109tnow. Likewise, weff(t)
would have been strictly fixed at weff = 0 during the cosmological evolution. However, this is not
a traditional dark-matter setup: this is a DDM ensemble in which the present-day cosmological
abundance Ωtot(tnow) ≈ 0.26 is spread across a relatively large number of individual components
with different masses and different lifetimes. It is thus the continued, sequential decays of these
different components which produce the softer, gentler drop in Ωtot(t) as t approaches t ≈ 109tnow.
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Figure 2: Total cosmological abundances Ωtot (left column) and equation-of-state parameters weff (right
column) for our DDM ensembles, plotted as functions of time when all input variables are held fixed at their
“benchmark” values except for r (first row) and s (third row). In all panels the blue curve corresponds to
our “benchmark” point with B = 5/4, C = 2π/

√
3, r = 3.5, s = 3.5/30, and τ0 = 109tnow, while the curves

of other colors indicate departures away from this point. Note that, as expected, some variations away from
the benchmark point violate our look-back, weff, or M0 constraints. However, our internal self-consistency
constraints are always satisfied, with Ωtot(tnow) = ΩCDM ≈ 0.26 in all cases.

We can also examine the individual constributions to the total present-day abundance Ωtot

from each individual mass level n. Our results are shown in Fig. 3. Fig. 3 consists of a sequence
of dark-matter pie charts showing the relative contributions to Ωtot(tnow) = ΩCDM ≈ 0.26 from
the lowest-lying states for r = 3.5 (top row) and r = 4 (bottom row), with r/s = {25,30,50,65}
across each row. Within each pie, we illustrate the corresponding collective abundances Ω̂n(tnow)

as separate slices, one for each value of n, while the numbers listed within each slice indicate the
number of individual states ĝn contributing at that mass level. For each pie chart we have also
shown the corresponding values of M0, Tc, and Ms. For these calculations we have used the input
value TMRE = 0.7756 eV. We have also taken gMRE = 3.36 and gc = {10.75,61.75,106.75,106.75},
respectively, for r/s = {25,30,50,65}, where g∗(T ) tallies the number of effectively relativistic
degrees of freedom driving the Hubble expansion at any temperature T , with gα ≡ g∗(Tα). We
have also assumed our standard benchmark values B = 5/4, C = 2π/

√
3, and τ0 = 109tnow.
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We see in general that increasing r from 3.5 to 4.0 (i.e., passing from the top row of pie
charts in Fig. 3 to the bottom row) has the net effect of shifting cosmological abundance away
from the ground state, thereby increasing η and generally making each pie slice smaller while
simultaneously lowering the corresponding mass scales. This is in complete accord with the results
shown in Fig. 1. Likewise, decreasing or increasing r/s (i.e., moving left or right along either
row) has the effect of increasing or decreasing η while decreasing or increasing our corresponding
mass scales. Indeed, we see that the variable r/s allows us to interpolate between two extremes:
traditional ensembles with high mass scales at large r/s versus DDM-like ensembles with smaller
mass scales at small r/s. We further observe that for sufficiently small r/s, the largest pie slice is
no longer the n = 0 slice (labelled ‘1’ in each pie chart) — as r/s decreases, this honor gradually
shifts towards the pie slices corresponding to higher mass levels.

5. Conclusions

We have seen that a tremendous variety of DDM ensembles exist which have the two fun-
damental features outlined in the Introduction — Regge trajectories and exponentially rising de-
generacies of states. These ensembles are consistent with our look-back and weff constraints, and
thus satisfy the zeroth-order constraints that may be imposed on such ensembles on the basis of
their total energy densities and equations of state alone. We also observe an important feature, an
inverse correlation between the tower fraction η (which governs the extent to which our ensemble
is truly DDM-like) and the magnitude of its underlying mass scales. Indeed, we have seen that
while traditional ensembles typically have high corresponding mass scales, our ensembles become
increasingly DDM-like for lower mass scales — all while remaining consistent with our look-back
and weff constraints. These observations will likely be an important guide and ingredient in any
future attempts to build realistic dark-matter models of this type.

We are certainly not the first to consider dark-matter scenarios in which the dark matter is
composite. Indeed, there exists a large literature of work in this direction. For example, within
the context of traditional dark-matter models, it has been appreciated for some time that the dark-
matter particle could be a composite state. For example, the lightest technibaryon in technicolor
theories was long ago identified as a promising dark-matter candidate, and mechanisms were ad-
vanced by which this particle could be rendered sufficiently light so as to be phenomenologically
viable. Other more exotic baryon-like composites have also been advanced as potential dark-matter
candidates. A variety of scenarios in which a long-lived meson-like state which appears in the
confining phase of a strongly-coupled hidden sector have been developed as well. These include
scenarios in which the dark-matter particle is a pseudo-Nambu-Goldstone boson (PNGB) stabi-
lized by a dark-sector analogue of flavor symmetry or G-parity, or alternatively by some other
symmetry of the theory with no Standard-Model analogue. Scenarios in which the dark-matter
candidate is not a PNGB, but rather a bound state of one heavy quark and one light quark, have
also received recent attention primarily due to the non-standard direct-detection phenomenology
to which they give rise, as have scenarios in which the dark-matter candidate is a bound state of
heavy quarks alone. More general studies of composite hidden-sector theories which give rise to
meson-like or baryon-like dark-matter candidates within different regions of parameter space have
also been performed. Composite hidden-sector states consisting of non-Abelian gauge fields alone

10
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(so-called “glueball” states) have also long been recognized as promising dark-matter candidates.
Indeed, such theories arise naturally in a variety string constructions, as well as in certain anomaly-
mediated supersymmetry-breaking scenarios. In addition, the possibility that composite states in
the dark sector could themselves form bound states (so-called “dark nuclei”) has also been studied,
as has the possibility that these nuclei themselves could combine to form dark “atoms” or even dark
“molecules”. There also exists many other ideas that have been pursued along these lines; a more
complete discussion, along with appropriate references, is given in Ref. [1].

While all of these represent theoretically viable possibilities for the dark sector, the dark en-
semble we have considered in this paper is unique for several important reasons. In traditional
composite dark-matter models, it is usually a single bound state (usually the lightest bound state)
which serves as the primary dark-matter candidate and which therefore carries the full dark-matter
abundance ΩCDM. While there may be several other dark states to which this bound state couples
— and which may play a role in determining the abundance of the dark-matter candidate — it is
nevertheless true that only one (or a few) composite states carry the dark-matter abundance ΩCDM

and thereby play a significant role in dark-sector phenomenology. By contrast, within the DDM
framework, the dark-matter abundance is potentially spread across a relatively large set of com-
posite states with various masses and lifetimes. Thus the usual required stability of the traditional
dark-matter candidate is not a required feature of the DDM ensemble, thereby allowing the asso-
ciated dark-matter abundance ΩCDM(t) and dark-matter equation-of-state parameter weff(t) to vary
with time — even during the current, matter-dominated era. Moreover, because the entire spectrum
of composite states is potentially relevant for determining the properties of the dark sector within
the DDM framework, features such as the existence of Regge trajectories and a Hagedorn-like ex-
ponential growth in the particle degeneracy — features which are cornerstones of strongly-coupled
theories — are now relevant for determining dark-sector phenomenology.

Throughout this work, we have essentially assumed that our strongly-coupled dark hadrons
decay primarily to states in the visible sector, rather than to lighter hadronic states within the DDM
ensemble (and even those lying along the same Regge trajectory). At first glance, this might seem to
be in conflict with our original supposition that the interactions governing the dynamics of the dark
sector are sufficiently strong so as to produce hadron-like bound states in the first place. However,
no conflict actually exists.1 In a nutshell, this is because the parameters that govern the binding of
the dark quarks into dark hadrons are independent of the parameters that govern the intra-ensemble
decay widths. In particular, the intra-ensemble decay widths of a strongly interacting theory depend
not only on the strong coupling (related to string tension and/or the binding potential), but also on
the masses of the dark quarks (about which we have never made any constrainig assumptions).
More specifically, the masses and decay widths of the dark hadronic resonances depend on all of
the parameters of the strongly interacting Lagrangian — on the values of the coupling gdark and the
dark-quark masses mqdark

i
, mdark

H = mdark
H (g,mq1 ,mq2 , . . .). Thus, a strongly-coupled theory need not

imply large decay widths between the composite particles.

This may seem surprising because QCD (the particular realization of strong interaction in the
visible sector) has a Lagrangian with parameter values that lead to rapid intra-spectrum decays.
However, this need not necessarily hold for the entire parameter region. In particular, there have

1We thank Luka Leskovec for important discussions on this point. Further details can be found in Ref. [17].
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been several recent start-of-the-art lattice-QCD calculations — all reviewed in in Ref. [13] — in
which the light quark masses are set to values that are higher than those observed in the visible
sector. Interestingly, a global picture is emerging from these studies, namely that there exists a
region of parameter space in which hadronic resonances appear as stable bound states because
their decay channels are kinematically forbidden. Of course, whether this property generalizes
to all strongly interacting theories is unclear. However, there are studies that support this. For
example, Ref. [15] provides an example in which the mass of the ρ particle mass can lie either
below or above the 2mπ threshold (see Fig. 2). Another very interesting study is the investigation
of the ρ in SU(2) strongly-coupled gauge theories presented in Ref. [16].
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