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1. Introduction

The research on axions is developing very quickly, both at the theoretical and experimental
level, and involves expertise from astrophysics, cosmology and various aspects of particle physics.
The aim of the round table was to discuss the various aspects of the research on axions and conclude
with an open discussion between us and the audience. We start here with an introduction to the
problem.

The original motivation for axions comes from QCD. In fact, to the usual QCD action, one
can add a θ term

L =−1
4

Fa
µνFaµν + iΨ̄γ

µDµΨ− Ψ̄MΨ−θ Q(x) , (1.1)

where Q is the topological charge density:

Q(x) =
1

32π2 Fa
µν F̃aµν ; F̃a

µν =
1
2

εµνρσ Faρσ . (1.2)

The θ term, together with a phase in the quark mass matrix, breaks CP and produces a non-zero
electric dipole moment for the neutron [1] (in units of e = 1):

Dn ∼ θ̄ ·3.6 ·10−16 cm ; θ̄ = θ +ArgdetM . (1.3)

The experimental limit [2]

|Dn|< 3.0 ·10−26 cm =⇒ θ̄ . 10−10 (1.4)

gives a value for θ̄ that is very small and actually consistent with zero. Can we make it to be zero
in a natural way?

The proposal of Peccei and Quinn [3], for making it to be zero, has been to introduce, in the
matter sector of QCD, some new degree of freedom with an extra U(1)PQ symmetry that is broken
by an anomaly exactly as the U(1)A of QCD. It has been then realized that the Peccei-Quinn
mechanism implies the existence [4, 5, 6] of a new particle that was called axion. For reviews on
axions see Refs. [7, 8, 9, 10].

A convenient way to describe its connection with the low energy degrees of freedom of QCD
is to include [11, 12] the axion in the effective Lagrangian [13, 14, 15, 16, 17, 18, 19] for the
pseudo-scalar mesons:

L =
1
2

Tr(∂µU∂µU†)+
1
2

∂µN∂µN† +
Fπ

2
√

2
Tr
(
µ

2(U +U†)
)
+

−θQ+
Q2

aF2
π

+
i
2

Q(x)
(
Tr(logU− logU†)+αPQ(logN− logN†)

)
(1.5)

where U is the field describing the pseudo-scalar mesons, while N is the one related to the axion a

U(x) =
Fπ√

2
ei
√

2Φ(x)/Fπ ; N(x) =
Fa√

2
ei
√

2a(x)/Fa ; µ
2
i j = µ

2
i δi j . (1.6)
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µ2
i j is related to the quark mass matrix that gives a non-zero mass to both the axion and the pseudo-

scalar mesons and that mixes them. In general, however, the axion is also coupled to all the fields
of the Standard Model through the following effective Lagrangian (see for instance Ref. [20] for a
study of the properties of the QCD axion):

Laxion =
1
2

∂µa∂
µa− αPQ

√
2a

Fa
Q(x)+

gaγγ

4
F(em) · F̃(em)a+Lint

(
∂µa
Fa

,Ψ

)
. (1.7)

The first two terms are universal and are the same as the second and the last terms appearing in Eq.
(1.5). The third term describes the coupling of the axion to two photons where

gaγγ =
α
√

2
2πFa

(
E
N
− 2

3
mu +4md

mu +md

)
;

mu

md
∼ 0.5 . (1.8)

E and N are respectively the electromagnetic and the colour anomaly of the axial current associated
to the axion field. In particular, E

N = 8
3 in grand-unified models as in the DFSZ model [21, 22] and

E
N = 0 in the KSVZ model [23, 24]. Finally, the last term in Eq. (1.7) is also not universal.

From the Lagrangian in Eq. (1.5) it can be seen that the axion gets a non-zero vacuum-
expectation-value that cancels the dependence of the physical quantities on θ . It can also be seen
that the axion mixes with the neutral pseudo-scalar mesons and gets a non-zero mass given by

m2
a =

2α2
PQ

F2
a

χQCD ; χQCD = 〈Q(0)
∫

d4x Q(x)〉 , (1.9)

where χQCD is the topological susceptibility in QCD.
The mechanism of Peccei-Quinn with the introduction of a U(1)PQ symmetry that is then

broken by the U(1)A anomaly may look very artificial. On the other hand, many of this kind of
U(1)’s appear in string theory [25].

The 10-dimensional consistent string theories contain higher anti-symmetric gauge potentials
(Bµν ,Cµνρ . . .) that generalize the electromagnetic potential Aµ . Phenomenologically viable mod-
els require to compactify the 6 extra dimensions: M10 = M4 ×V6. Therefore, for each choice
of compactification, we get a four-dimensional Lagrangian containing, in general, several four-
dimensional Bµν potentials. In D= 4 they correspond to pseudo-scalars fields A through the duality
relation:

εµνρσ ∂
νBρσ ∼ ∂µA (1.10)

with Lagrangian (as the QCD axion)

L =
1
2

∂µA∂
µA+

A
FA

Q(x)+ . . . ; FA ∼
αGMP

2π
√

2
∼ 1016 GeV ; αG =

1
25

(1.11)

where MP is the Planck mass and αG the fine structure constant in grand-unified theories. The study
of Ref. [25] indicates that, in general, there is the tendency to get too large values for FA close to
MP. The important thing is, however, that those pseudo-scalars, unlike their scalar partners that
are required to get masses of the order of 10 TeV to avoid problems with fifth forces, can have a
very small mass at the sub eV level. See for instance Ref. [26] for a detailed discussion of these
questions in the framework of compactifications on Calabi-Yau spaces and Ref. [27] for a review.

In this introduction we have briefly summarized some property of the QCD axion and of axion-
like particles (ALPs). In the following we will be describing various aspects of the physics of the
QCD axion and of ALPs.
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Figure 1: Hinted regions in the ALP parameter space from stellar observations. The experimental potential
is also shown.

2. Axions in astrophysics

Besides dedicated terrestrial experiments, stellar observations offer a unique - and often very
powerful - way to look at axions and other weakly interacting particles [9, 28]. Considerations
about stellar evolution have provided very strong bounds on the axion couplings to photons, elec-
trons, and nucleons, often exceeding the results achieved in laboratory experiments.

Quite intriguingly, a series of astrophysical observations have shown an excessive energy loss
in many stellar systems, which could be accounted for by additional light, weakly interactive par-
ticles. These anomalous observations include i) several pulsating white dwarfs (WDs), in which
the cooling efficiency was extracted from the rate of the period change [29, 30, 31, 32, 33]; ii)
the WD luminosity function (WDLF), which describes the distribution of WDs as a function of
their brightness [34, 35, 36]; iii) red giants branch (RGB) stars, in particular the luminosity of the
tip of the branch [37, 38]; iv) horizontal branch stars (HB) or, more precisely, the R-parameter,
that is the ratio of the number of HB over RGB stars [39, 40]; v) the ratio of blue and red super-
giants [41, 42, 43, 44].

The new-physics interpretation of these anomalies has resulted in the selection of axions and
ALPs, among the various light, weakly interacting particles, as the only candidates that can explain
all the excesses [45]. Given the very different stellar systems in which excessive energy losses have
been observed, it is quite remarkable that one single candidate can explain all the observations. A
global analysis of the hints from WDs, HB, and RGB stars, shown in Fig. 1, indicates a preference
for ALPs coupled to both electrons and photons, though a vanishing photon coupling would still be
compatible with the observations within 1σ . The electron coupling, on the other hand, is predicted
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Figure 2: ALP parameter space gaγ vs. ma with axion hints and experiments. The region hinted by HB stars
is calculated for ALPs interacting only with photons.

to be finite with a ∼ 3σ statistical significance. In any case, the hints point to a well defined area
in the axion parameter space which is in part accessible to the next generation of axion probes (see
sec. 4 for more details).

Specific QCD axion models could also be responsible for the excessive cooling [46]. In this
case, there are well defined relations between the different axion couplings with the standard model
fields and, in particular, the axion couplings to nucleons cannot be neglected. Strong bounds on the
axion-nucleon couplings were inferred from the observed neutrino signal of SN 1987A and, more
recently, from the cooling of the neutron stars in the supernova remnant Cassiopeia A [47] and the
neutron star in HESS J1731-347 [48]. If we take the DFSZ axion model as an example, we find
that the combined observations point to the mass range ∼ (2− 20) meV [46]. This mass range is
difficult to probe experimentally (see Fig. 2), and partially accessible only to IAXO and, possibly,
ARIADNE [49].

These bounds on the nuclear couplings are, however, quite less robust than the bounds from
other stars, in part because of the difficulty in describing the nuclei interactions in the axion
bremsstrahlung process (see, e.g., [50]). Moreover, it is possible to consider specific nucleophobic
axion models [51], in which the tension with these bounds could be strongly relaxed. In this case,
the hinted mass region would move to about 0.1 eV [46], a fairly large value, possibly accessible
only to IAXO among the proposed next generation of axion-scopes. Interestingly, this region has
also been proposed recently to explain the EDGES observation of the anomalously strong 21cm
absorption feature [52, 53].

Another longstanding astrophysical puzzle, the excessive transparency of the universe to high
energy (E & 100 GeV) photons in the galactic and extragalactic medium [54], has also invoked an
ALP solution [55, 56, 57, 58]. High energy photons produce electron-positron pairs when scatter

4



P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
2
0
1
8
)
0
3
4

Axion

on the extragalactic background light. Therefore, the Universe should be opaque to high energy
photons, with the threshold energy depending on the source distance, and the number of very high
energy gamma rays from extragalactic sources should be strongly attenuated. However, a number
of sources have been observed at large optical depths and have shown unexpected hardening at high
energies. Several studies, culminated in the updated analysis in [58], which was performed on an
enlarged and high-quality sample of sources, confirmed the anomalous hardening and identified a
light ALP coupled to photons as a very elegant solution.

In the ALP solution to the transparency problem, photons are converted into ALPs in the ex-
tragalactic magnetic field [59] and, after propagating unimpeded for some distance, are reconverted
into photons in a mechanism largely resembling the light shining through a wall experimental setup.
In this case, the observations hint to a much lower mass region, excluding the possibility of a QCD
axion solution. Nevertheless, the hinted range of the axion-photon coupling largely superimposes
the range hinted by the stellar cooling excesses (see Fig. 2).

Part of the hinted region has been excluded by the non-observation of gamma rays from
SN 1987A [60] and, more recently, by the search for spectral irregularities in the gamma ray spec-
trum of NGC 1275 [61]. However, a large section remains available. As evident from Fig. 2, this
region is accessible to next generation of axion experiments such as ALPS II and IAXO. Also,
remarkably, the entire region hinted by both cooling anomalies and transparency would be easily
accessible to the Fermi Large Area Telescope in the event of a future galactic SN [62].

Very recently further evidence for photon-ALP oscillations has been proposed to explain the
spectral modulations of galactic pulsars [63] and the spectra of supernova remnants [64]. The two
independent analyses point to remarkably similar axion parameters, ma = a few neV and gaγ= a
few 10−10 GeV−1. However the hinted region is in tension with the CAST results from the search
of solar axions (cfr. sec. 4 and Fig. 2).

Whether the astrophysical observations are correctly hinting at physics beyond the standard
model or not can be verified only with dedicated terrestrial experiments. The advances in astro-
physical observations expected in the next few years, however, will certainly improve the quality
of the data and either reduce or strengthen the significance of these hints. Whatever the case, it
is certainly remarkable that astrophysical analyses and terrestrial experiments of the next genera-
tion will be able to explore largely overlapping regions of the ALP parameter space, a fact never
witnessed before. This undoubtedly adds to the current appeal of the research on axions.

3. Axions in cosmology

Axions and ALPs might also play a role in the cosmological evolution. Cosmological obser-
vations, including measurements of the cosmic microwave background (CMB) anisotropies and
of the distribution of large scale structures (LSS), can thus be used to constrain axion properties,
providing complementary information to that obtained from laboratory experiments and stellar ob-
servations. Interestingly enough, ALPs are possibly related to different aspects of the cosmological
phenomenology, including dark matter, dark energy, dark radiation, and inflation.

A cosmological population of axions and ALPs can be produced through several mechanisms:
thermal production, decay of topological defects (e.g. strings), decay of heavy particles, and the
misalignment mechanism. Cosmological axions can be either “cold” or “hot”. In the former case
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they might make up for all, or a large part of, the dark matter content of the Universe. In the
latter case, considerations of structure formation require that axions can only be a subdominant
component of the dark matter. Axions can be produced from the thermal bath, e.g. QCD axions
are produced through pion-pion scattering, π + π → π + a ([65, 66]; see also [67] for a recent
calculation). Being relativistic, these axions are hot and would contribute as dark radiation at
early times. The decay of a heavy particle also usually produces relativistic axions, and thus dark
radiation. In fact, the presence of an axion population from moduli decay is a generic prediction
of string and M-theory (see e.g. [26, 27]). Measurements of the effective number of relativistic
species Neff can be used to constrain relativistic axions. Present observations are consistent with no
radiation components in addition to the three neutrino families of the SM; for example, Planck 2018
data yield Neff = 2.99±0.34 (95% CL) [68]. Thermal axions also affect structure formation at late
times, suppressing small-scale fluctuations in a similar way to neutrinos. Together, these two effects
can be used to constrain the abundance of relativistic axions and thus their mass. A combination of
Planck 2015 data (including Sunyaev-Zeldovich cluster counts) with measurements of the Hubble
constant and of the baryon acoustic oscillations scale yields ma < 0.54eV at 95% CL for thermal
QCD axions ([69]; see also [70, 71] for older constraints using Planck 2013 data). Bounds on
thermal axions can be evaded by relaxing the assumption of a standard thermal history, like in
scenarios with a low reheating temperature [72], but are quite robust with respect to assumptions
about the underlying inflationary model [73, 74]. Future observations are expected to improve the
sensitivity on Neff by one order of magnitude, and might be able to detect ma ' 0.15eV at high
significance, from a combination of CMB and LSS observations [75].

Cold axions can instead be produced by the decay of topological defects (strings and domain
walls) produced at the time of PQ symmetry breaking [76], or by the misalignment mechanism, in
which the axion field is initially displaced from its minimum [77, 78, 79, 80]. Both these mecha-
nisms produce non-relativistic axions, that are thus good candidates for cold dark matter [65, 66]. In
the misalignment mechanism, the axion field at early times (as long as H >ma) is frozen at its initial
value1 a(tin) and behaves as vacuum energy. Later, when H < ma, coherent oscillations of the ax-
ion field around the minimum set up (“vacuum realignment”) and axions behave as non-relativistic
matter. The present energy density Ωmis of misalignment-produced axions depends on the axion
mass, including its evolution with time, and on the initial misalignment angle θin = a(tin)/Fa. Ax-
ion production in the decay of cosmic strings is dominated by low-frequency modes, making them
also non-relativistic. The relic density of string-produced axions Ωdec can be computed through
field-theoretic lattice simulations of the string-wall network, and is usually expressed through the
ratio αdec ≡ Ωdec/Ωmis. At the current time, there is no consensus about the value of αdec, with
some studies concluding that the contribution from topological defects (including also domain
walls) is dominant over the misalignment mechanisms (i.e., αdec � 1) [81, 82, 83, 84, 85], and
others coming to the opposite conclusion (αdec . 1) [86, 87, 88, 89, 90]. In any case, individual
studies are also affected by significant theoretical uncertainties related to the poor knowledge of
some parameters, like e.g. the scale parameter, that characterises the average number of strings
per horizon volume. Recently, a logarithmic grow of the scale parameter with asymptotically large
times has been reported by different groups [91, 92, 93]. If confirmed, such a growth might enhance

1Note that here a is the axion field and not the cosmic scale factor.
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the number of axions emitted by strings by a factor of a few [93] or even 10 [92], meaning that the
string contribution to the axion density has been underestimated in previous studies. Further stud-
ies are definitely necessary to settle this issue. Ref. [92] also notes that substantial uncertainties are
related to the instantaneous emission spectrum, especially for what concerns the extrapolation of its
behaviour to late times. When discussing vacuum misalignment and string decay as mechanisms
for axion production, it is important to distinguish two different cases: the “pre-inflationary axion“
scenario, in which the PQ symmetry is broken during inflation (Fa > HI/2π , with HI the Hubble
parameter during inflation), and the “post-inflationary axion" scenario (Fa < HI/2π), in which it is
broken after inflation. Topological defects are created at the time of PQ symmetry breaking, but
if this happens during inflation they are inflated away. Thus axion production from topological
defects is only relevant in the post-inflationary axion scenario. Moreover, when the PQ symmetry
is broken, the axion field in causally disconnected regions acquires a different value for the initial
misalignment angle θin. If this happens during inflation, our present observable Universe is con-
tained within a single patch of constant θin, that is then a free parameter of the model. If the PQ
symmetry breaking happens after inflation, the observable Universe contains many patches with
different values of θin, averaging to a background value 〈θ 2

in〉= π2/3.
In the case of the QCD axion, the axion mass ma and decay constant Fa are related by the

(temperature-dependent) topological susceptibility χQCD through Eq. (1.9). The temperature de-
pendence of χQCD enters in the determination of the temperature at which the coherent oscilla-
tions of the axion field begins, and is needed to evaluate the abundance Ωmis of QCD axions pro-
duced through vacuum realignment. The topological susceptibility can be computed using lattice
QCD simulations (see [94, 95, 96, 97, 98, 99, 100, 101, 102, 103] for recent efforts). A useful
fit for the misalignment axion density parameter today in the pre-inflationary scenario is [104]
Ωmish2 ' 0.12

[
Fa/(9×1011 GeV)

]1.165 f (θin)θ
2
in, where f (θin) is a factor that takes into account

anharmonicities in the axion potential ( f → 1 as θin→ 0), and the exponent 1.165 comes from the
temperature dependence of χQCD. Thus, in the pre-inflationary axion scenario, the PQ scale has
to be smaller than ∼ 1012 GeV (or equivalently ma & 6 µeV) if f (θin)θ

2
in ∼ 1, in order not to ex-

ceed the observed cold dark matter density Ωch2 = 0.1200±0.0012 [68]. However, larger values
of the PQ scale and smaller axion masses are possible if one allows for a certain degree of fine
tuning, in the form of a suitably small value of θin. The case Fa ' 1012 GeV is referred to as the
“natural” axion, while the region Fa� 1012 GeV, that requires θin� 1, is the so-called “anthropic”
window. The natural region of axion parameter space can be probed by ADMX (see Fig.3). In
the post-inflationary scenario, instead, the region that evolved to become our observable Universe
contains many patches with different values of θin, and the quantity f (θin)θ

2
in should be averaged

over the range θ ∈ [−π, π]. This yields Ωmish2 ' 0.12
[
Fa/(1.9×1011 GeV)

]1.165, so that the right
dark matter density is obtained for Fa ' 2×1011 GeV, or ma ' 30 µeV; smaller values of Fa (larger
masses) are thus in principle allowed by cosmology. This region, bounded below by the constraints
from stellar physics defines the “classic” axion window and will be probed in the next years by
MadMAX and IAXO. In this case, however, one should also take into account the production of
axions in the decay of topological defects. As noted above, significant uncertainties are associ-
ated to this production mechanism. The predictions for the value of ma that yields the observed
DM abundance, once both vacuum realignment and string decay are considered, vary in the range
ma ≈ (25−200)µeV (see e.g. [82, 90, 105, 106, 107]).

7
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If the PQ symmetry is broken during inflation, the presence of another scalar field, in addi-
tion to the inflaton, leads to the generation of primordial uncorrelated isocurvature fluctuations,
whose power Piso is proportional to the combination H2

I /θ 2
inF2

a . Planck observations of the CMB
anisotropies constrain uncorrelated isocurvature perturbations to contribute at most ' 4% of the
total primordial power [108], thus providing important information about axions during inflation.
Assuming that axions make up for all the dark matter, the initial misalignment angle can be ex-
pressed as a function of Fa, and the non-observation of isocurvature modes yields a constrain
HI < 0.86×107 GeV(Fa/1011 GeV)0.408 [108]. Then, if we were to know the scale of inflation, this
would set a lower limit on the axion decay constant. The energy scale HI of inflation is currently
constrained by the non-observations of tensor modes in the CMB: HI < 2.7Mp ' 6.6× 1013 GeV
combining Planck 2018 and BICEP2/Keck Array data [108]. An observation of tensor modes in
next-generation CMB experiments would imply HI ∼ 1013 GeV and require a super-planckian Fa

to accomodate the isocurvature bound, thus strongly disfavouring dark matter entirely made by
pre-inflationary axions (see also [105, 109] for the implications of the, now disproved, BICEP2
claim).

An interesting phenomenological consequence of the post-inflationary scenario is the possi-
bility of forming axion miniclusters [110], that evolve from large spatial variations of the axion
field and can host a large fraction of the cosmological axion population. The density field that will
eventually evolve to form axion miniclusters has been recently simulated, also taking into account
the contribution from strings and domain walls, in Ref [111]. Gravitational lensing can constrain
axion miniclusters [112, 113, 114].

ALPs can also be produced through the misalignment mechanism. In particular, ALPs with Fa

at the GUT scale can provide the observed DM abundance if ma ' 10−19 GeV without fine-tuning
(θin ' 1). Such a value of the mass falls in the region of ultra-light axions (ULAs) ([115]; see also
[116] for a review), defined by the requirement that their Compton wavelength exceeds the Earth
radius, or ma < 2×10−13 eV. Thus for ULAs the particle description breaks down at scales larger
than the Earth size (at least). As a consequence, ULAs behave as “fuzzy” dark matter, resulting in
a different pattern of structure formation at small scales with respect to standard CDM, and might
have the potential to solve the “CDM small-scale crisis” [117, 118] . ULAs are predicted, for
example, in string theory compactifications (see Sec. 1). In order for the ULAs to contribute to the
DM density, coherent oscillations of the ULA field should start before matter-radiation equality;
this amounts to the requirement ma & 10−27 eV. CMB observations constrain ma > 10−24 eV for
ULAs making up all the DM [119]. Stronger constraints can be obtained from non-linear probes
like the Ly-α forest flux power spectrum, see e.g. [120]. ULAs lighter than the present-day Hubble
constant, ma . H0 ∼ 10−33 eV are instead still “frozen” at the initial misalignment angle and thus
behave as a cosmological constant. In the region of masses between 10−32 eV and 10−26 eV, ULAs
can contribute at most 5% of the total DM density [119].

Axions, or better ALPs, can also drive inflation2. The simplest inflationary scenario involving
the axion is the so-called “natural inflation” [121], in which the inflationary potential is the simple
axion cosine potential: V (φ) = Λ4 [1+ cos(φ/Fa)]. Natural inflation yields power-law spectra for

2This is different from the pre-inflationary scenario discussed previously, in which the axion is not the inflaton but
only a spectator field during inflation.
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the primordial fluctuations. The parameter space of natural inflation is constrained by the Planck
observations [108]. In the allowed region, it predicts primordial tensor fluctuations large enough
to be within reach of forthcoming CMB experiments. Axion monodromy [122] is instead a string-
motivated UV completion of axion inflation. In this model, the primordial power-law spectrum
typical of slow-roll inflation is modulated by oscillatory features. Planck data are consistent with
a smooth power-law spectrum of primordial fluctuations, and do not show statistically significant
evidence for the presence of periodic features [123, 108].

It is remarkable that cosmological observations can constrain the parameter space of axions
and ALPs in many different ways, and that this kind of particles might be related to several of the
outstanding open problems in cosmology that currently point to new physics. Future cosmological
data will definitely allow to shed some light on these issues. On the other hand, axion cosmology
will also benefit from theoretical efforts aimed at advancing our understanding of the topological
properties of QCD in the high temperature regime.
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Figure 3: Haloscopes results and projected sensitivities.

4. Experiments searching for axions and axion-like particles

This section gives a brief overview on experimental concepts to search for the QCD axion and
axion-like particles (ALPs), thereby focusing on approaches to exploit couplings of such particles
to photons. Exemplary three larger scale experiments under construction or planned for at DESY
in Hamburg are coarsely described. For a more detailed overview on the experimental landscape
see for example [124] or [125]. In the following, the term axion will be used as a synonym for
axions and ALPs if not stated otherwise.

Lightweight scalar or pseudoscalar axions decay to two photons, however with lifetimes many
orders of magnitude larger than the age of the universe so that it is hard to exploit this effect
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experimentally. More promising is to base experiments on the related oscillation of photons into
axions and vice versa in presence of a background magnetic field as first proposed by P. Sikivie
[126]: axions passing a magnetic field might convert into photons, photons shone into a magnetic
field (perpendicular to their momentum) might convert to axions. Three different concepts rely on
this effect. They are sketched in the following sections.

Haloscopes

look directly for the dark matter constituents of our milky way. A dark matter axion entering
a magnetized volume might convert into photon. In the milky way halo dark matter axions move
at non-relativistic speeds so that the photon energy is given by the axion rest mass with an O(10−6)
correction. The power P generated by dark matter axions in an experiment is given by

P = ηg2
aγγ

(
ρa

ma

)
B2V PB (4.1)

with the experimental parameters η (efficiency), B (magnetic field strength), V (volume) and PB
(power built-up factor of the resonant amplification). Nature is providing gaγγ (axion-photon cou-
pling), ρa (local dark matter axion number density) and ma (axion mass). Assuming standard dark
matter halo models and the QCD axion making up all the dark matter, typical expectations are
P ≈ 10−22W making such experiments extremely challenging. Nevertheless, the ADMX exper-
iment has now reached a sensitivity to probe for such dark matter in the µeV mass region [127]
(cfr. Fig. 3). ADMX is a prime example for exploiting resonant microwave cavities for axion
dark matter searches. However, tuning cavities with a relative linewidth of about 10−5 to candi-
date axion masses spanning two to three orders of magnitude remains challenging. The experiment
MADMAX [128] strives for an alternative approach with a movable booster of dielectric disks em-
bedded in a high field dipole magnet. MADMAX will be sited at DESY in Hamburg and could be
installed by 2026.

Helioscopes

try to detect axions produced in the solar core. Such particles have energies related to the
temperatures in the solar center and are highly relativistic. They can convert to X-rays when passing
a transverse magnetic field. Therefore helioscopes basically consist of dipole or toroidal magnets
tracking the sun and looking for X-ray photons being generated in the light-tight magnet bores.
Their typical mass reach extends from 0 up to about 1 eV. The probability to observe an axion-to-
photon conversion is given by

Pa→γ = Ag2
aγγB2

(
sin(qL/2)

q

)2

with q =
m2

a

2E
(4.2)

with A being the aperture area of the magnet bore, L the length of the magnetic field B and E the
energy of the solar axion. For q� 1 the equation reduces to

Pa→γ = Ag2
aγγB2L2/4 (4.3)

It should be noted that helioscopes are also sensitive to axion produced in the sun via their couplings
to electrons (see Fig. 1) The CAST experiment at CERN has performed the most sensitive search
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for solar axions at present [129].

The International Axion Observatory (IAXO) [130] is the successor of CAST being able to check
for the astrophysical hints mentioned above and to explore the QCD axion in the mass range around
1 meV, which is not accessible by any other technology. IAXO will increase the sensitivity on gaγγ

by roughly a factor 20 compared to CAST.
A first step will be the BabyIAXO prototype to mainly test the magnet concept, new X-ray optics
and detectors. However, it will also have a physics reach more than a factor 3 beyond CAST and
could be ready in 2024. DESY in Hamburg is the potential host for BabyIAXO and IAXO.

Light-shining-through-walls

experiments aim for producing and detecting axions in the laboratory. They do not rely on
cosmological or astrophysical assumptions. In the first section of such an experiment, laser light
is shone through a strong magnetic field, where axions can be generated via a reverse process
sketched above. A second section of the experiment is separated from the first one by a light-
tight wall which can only be surpassed by axions. These particles would stream through a strong
magnetic field behind the wall allowing for a re-conversion into photons. This effect will give
the impression of light-shining-through-a-wall (LSW). The probability for a photon-axion-photon
conversion is very similar to the helioscope case, but includes now also the axion generation part.
For q� 1:

Pγ→a→γ =
1

16
g4

aγγB4L4 (4.4)

for a symmetric set-up with equal magnetic field strength B and length L before and behind the
wall.
LSW experiments have probed for axions in a model independent fashion [131, 132, 133], but
with sensitivities for gaγγ about three orders of magnitude less than helioscopes. ALPS II presently
under construction at DESY in Hamburg, based on 20 dipole magnets from the former HERA
proton accelerator, aims for going beyond the CAST sensitivity for axion masses below 0.1 meV
by incorporate mode-matched optical resonators before and behind the wall [134]. Equation (4.4)
at ALPS II will be modified to

Pγ→a→γ =
1
16

PBpPBrg4
aγγB4L4 (4.5)

with PBp and PBr denoting the power built-up factors of the resonators before and behind the
wall. ALPS II is aiming for PBp = 5,000 and PBr = 40,000. This will allow to probe for the
astrophysical hints mentioned previously. Data taking is scheduled to start in 2020.

Summary

Different experimental approaches to find axions are being pursued. An overview on exper-
iments exploiting axion-photon couplings is summarized in Table 1. Only few experiments are
taking data at present, but there will be many more results available in the next decade as partly
shown in the figures 2 and 3.

Within the update process of the European strategy on particle physics launched in 2018, the
axion community is proposing a “A European Strategy Towards Finding Axions and Other WISPs”
[135].
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Axion property Haloscope Helioscope LSW
Spin-parity yes perhaps yes
Mass yes perhaps perhaps
gaγγ no no yes
gaγγ ×flux yes yes –
Electron coupling no yes no
QCD axion in reach yes yes no
Assumptions cosmology solar physics –
Experiments taking data ≈5 0 0
Experiments under construction ≈4 0 1
Experiments proposed ≈10 2 2

Table 1: A comparison of different approaches to find the axion
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