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Ghost Sector in Minimal LCG Attilio Cucchieri

1. Why Study the Linear Covariant Gauge on the Lattice?

A big effort has been made in the last decades in order to understand the infrared properties
of Yang-Mills theories from the study of their Green’s functions, notably the gluon and the ghost
propagators (see, e.g., [[[] and references therein). To this end, several gauge-fixing conditions
have been considered: Landau gauge, Coulomb gauge, A-gauge, maximal Abelian gauge, etc.
In particular, in Landau gauge, the so-called Gribov-Zwanziger (GZ) confinement scenario has
captivated a lot of attention [P]]. A natural generalization of Landau gauge is the linear covariant
gauge (LCG). Recently, a possible way of extending the GZ approach (in the continuum) to LCG
has been proposed [B]. The resulting theory is characterized by an exact nilpotent nonperturbative
BRST symmetry [H].

For the moment, numerical simulations have focused on the implementation of the LCG on
the lattice [B, §, fl, B1 and on the study of the gluon propagator [[i, B, [[(]. On the other hand, it is
still an open problem how to define the Faddeev-Popov (FP) matrix for LCG on the lattice. This is
the goal of our study. Preliminary results have been presented in [[LT, [2]]. Some early results were
also presented in [[[3].

2. Minimal Linear Covariant Gauge

In order to impose the LCG on the lattice, one should first recall that the lattice Landau gauge,
which is a special case of the LCG, is obtained by minimizing the functional (see, e.g., [[4])

d
E6lUu8l = —RTr) Y Uji(x) = —RTr )] Z glx gl(xtepu). (2.1)
x u=l1 x u=l1

One can interpret the Landau-gauge functional as a spin-glass Hamiltonian for the “spin variables”
g(x) with a “random interaction” given by the link variables Uy (x). This suggests the existence of
several local minima for &;[U, 1 gJ. The set of these local minima, known as Gribov copies [, ,
[[4], defines the first Gribov region Q. From the second variation of the minimizing functional, we
define the Landau FP operator [[[§]

d
M (x,y) = Z {rbc [ 5x+e,1,y} +FZC(x—eu) [5x7y — 5x_eu7y}

1\,(,‘7
— Y pee [Afl(x—eu/2) Oceyy — Ap(x+eu/2) 5x+eu,y} } ; (2.2)
e=1

which is symmetric (under the simultaneous exchanges b <+ ¢ and x <+ y) and semi-positive definite.
In the above equation we used the definition

bgc cqb 2 &
@) = T [A A :/1 A U”(x)—;Uu(x)

, 2.3)

where {U,(¥)} is the gauge-fixed configuration and the matrices A’ are the N> — 1 traceless Her-
mitian generators of the gauge group SU(N..), normalized such that Tr(1?A¢) = 28¢. Note that for
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the usual generators A, with normalization Tr (A,A.) = &y./2, we have

~ A
dy = 7” . (2.4)
We also defined the lattice gauge field through the relations
L. 1 . o Tr . ot
Ap(R+2./2) = = [Uu®) - U@ ] = L [Uu(®) - Uu(®7] | (2.5)
2i 2iN,
S = 1 S =
A} (R+2,/2) = 5 Tr[Au(F+eu/2) 4], (2.6)
where 1 is the identity matrix.
It is important to note that one can write the Landau FP operator (@) as []
1
//Z:E(.///Jr—i—.///_), 2.7

with
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Here,
N2—1
D(%.5) = T () [ Suvas = 8oy | = B S AuF+80/2) [ty + s (2.10)

is the lattice gauge-covariant derivative [[[f]], which implies the transpose lattice gauge-covariant
derivative

T\DC (5 o _ 1bei= = be (=
(D))" (&) = Ty (X—2u) &—g,5 — Ty (%) Szy

N2—1
+ > fhee [Ail()ﬂéu/z)%+Ail()?—zu/2)6;_gp7y}. (2.11)

e

We have also indicated with Vﬁr) [respectively Vﬁﬁ] the usual forward (respectively backward)
lattice derivative. Since the transpose of the backward lattice derivative VEI) is given by —Vﬁr),
it is evident that .#” = ./, and the matrix .# in Eq. (2.7 can be written as (%, +.#]) /2=
(AT + .2_) /2, which is clearly symmetric (and real).

In turn, the lattice LCG condition can be obtained by minimizing the functional [[{]

ErcclUu, 8. A = E16lUu.8) + RTr Y ig(x)Alx), (2.12)
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where the functions A”(x) are real-valued, generated using a Gaussian distribution with width g1z,

By considering a one-parameter subgroup

b=1

N2—1
g(x,7) = exp [i’r Z yb(x)),b] , (2.13)
it is easy to check that the stationarity condition implies the lattice LCG condition
d
v.Ab(x) = Z Ab(x+eu/2) — Ab(x—eu/2) = A(x) (2.14)

which gives, in the formal continuum' limit @ — 0, the gauge condition a ¥, 8pAZ (x) = Ab(x). Tt
is important to stress that the LCG functional é7¢6[Uy, g, Al is linear in the gauge transformation
{g(x)}. This allows us to naturally extend to the LCG case the gauge-fixing algorithms used in
Landau gauge [[[7]. On the other hand, the standard compact discretization (2.3) for the gauge field
A? (x+ e, /2) implies that this field is bounded, so that V- A?(x) is also a bounded quantity. This is
in contrast with the A?(x) functions, which are generated using a Gaussian distribution and, there-
fore, are unbounded. Thus, one can face convergence problems when a numerical implementation
of the LCG is attempted [[7, B {1
The continuum gauge field A 11 (X) is usually defined through the relation

Uy (X) = exp [iagofi“()?—i- E“/2)] , (2.15)

where g is the bare coupling constant. Then, Eq. (214 yields a’go ¥, [duAL (¥) + O(a?)] =
AP(X) in the formal continuum limit @ — 0. On the other hand, the usual gauge field in the contin-
uum limit —i.e. when the generators Ay, are considered [see Eq. (2:4)1—is given by

240 (%) ~ 247(%)/ (ago) - (2.16)

Thus, with our notation, the continuum functions A?(¥) satisfy the relation 22 -1 8#AZ (%) =Ab(%)
and we obtain
a?goAP(X) ~ 2AP(F) . (2.17)

Then, in the limit a — 0, it is easy to show [[L1] that the expression

1 SNt 2 B 24 (x)]?
ARl BEE T e
becomes
! / ddeil[Ab(x)]z 2.19)
2& bh=1 . .

Here, B = 2N, /(a*¢ g3) in the lattice parameter entering the Wilson action for the SU(N,) case,
in a generic d-dimensional space. Thus, the continuum and lattice widths, 51/ 2 and 51/ 2, of the
corresponding Gaussian distributions are related through the expression & = & N./(2f3). This gives

! As usual, we indicate with a the lattice spacing.
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&< é when N, < 2 3. This inequality is satisfied for N, = 2,3 and for typical values of 8 in the
scaling region.

A few numerical studies of the gluon propagator have been carried out, using the above lattice
formulation for LCG [IZ, H]. In particular, it has been checked, for the SU(2) and SU(3) gauge
groups, that the longitudinal propagator D;(p?) satisfies the relation p?D;(p?) = &, as predicted by
perturbation theory. At the same time, the transverse gluon propagator D,(p?) has shown a clear
dependence on the gauge parameter &, i.e. D;(0) decreases as & increases. Finally, D;(0) decreases
if the lattice volume V increases [f]], as in Landau gauge. These results are in agreement with the
numerical data obtained in Refs. [E, ], using a different formulation for the lattice LCG, and with
several analytic predictions [[, [§, [9].

3. The Ghost Sector

In order to define the ghost sector in lattice minimal LCG, one should first recall that, in the
continuum, there are in principle three different possible setups for the LCG (see, e.g., Appendix

A in Ref. [PQ)):

1) complex ghost fields ¢ = ¢, giving the the FP matrix —d - D* and a non-Hermitian La-
grangian density;

2) complex ghost fields ¢ = ¢ and a symmetric FP matrix — (0 - D* 4 D¢ - 9) /2, with a quartic
ghost self-interaction term in the Lagrangian density;

3) real independent ghost/anti-ghost fields u, iv and the effective Hermitian FP matrix

i 0 —9d-Db G)
— =M. .
2\ pbe.9 0

On the lattice, if one follows the same procedure used in Landau gauge —i.e. if one evaluates
the second variation of the functional &,.c[Uy, g, A], defined in Eq. 2.12),, using the one-parameter
subgroup (R.13)—it is immediate to see [[[1}, [2} [3] that the term i g(x) A(x) does not contribute to
the FP matrix. Thus, one is left with the second variation of the (Landau-gauge) term &7 [U#, gl,
yielding the usual symmetric Landau FP matrix .#, defined in Eq. (2.2). As we have seen in the
previous section, this FP matrix can also be written as

PR RS T (g
_—Zz[v# Dy + D], (Vu ) ] (3.2)
nu=1

which corresponds to the symmetric FP matrix of case 2) above. On the other hand, it is not
clear how a quartic ghost self-interaction term could be obtained on the lattice using the approach
considered here. Let us stress that the above matrix .# has real non-negative eigenvalues and real
eigenvectors, since it is real and symmetric (and, therefore, it is Hermitian).

A possible lattice discretization of the FP matrix —d - D’ of case 1) is given by the matrix in
Eq. (@), which can be written as

N2-1

M (xy) = M (xy) + Y A0S (3.3)

e=1
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where we used the gauge condition () and f%¢ are the (real) structure constants of the SU(N,)
gauge group, defined through the commutation relations Mb , QLC] =2i Z{EII fP¢A¢. On the other
hand, the extra term in Eq. (B.3) is skew-symmetric under the simultaneous exchanges b <+ ¢ and
X <>y, and it cannot be obtained from a second variation, i.e. it should be added by hand! It is
important to note that the matrix ., has complex-conjugate eigenvalues (and eigenvectors) with
a non-negative real part. See Ref. [[L1], for more details about this setup.

Finally, when considering the continuum case 3), one should note that the effective FP matrix
M, defined in Eq. (, is also real and skew-symmetric and, therefore, it cannot be obtained
directly from a second variation of any minimizing functional. On the other hand, since .#"(x,y)
is real and symmetric, if one extends to the complex case the bilinear form

N2—1

Yooy Y W2 xy)n ), (3.4)

b,c=1

i.e. if one considers ylb (x), yzb (x) € C, then the corresponding sesquilinear form

MM
(3.5)
()

is a positive semi-definite Hermitian form. Moreover, its imaginary part is skew-symmetric and
gives us a natural way of obtaining the FP matrix

1 0 A, 1 0 A,
M=1 _ - , (3.6)
2\ -t 0 2\ - 0
which is a possible discretization of the matrix defined in Eq. (B.1)). In this case, since M is skew-

symmetric, its eigenvalues are complex-conjugate and purely imaginary, and they are related to the
singular-value decomposition of .#,., i.e. to the eigenvalues of .Z1 /.

4. Numerical Simulations: Ghost Propagator

We have done some preliminary tests, evaluating the ghost propagator using the FP matrix
defined in Eq. (B.3). Since the matrix ./ fc (x,y) is real and not symmetric, we cannot use the con-
jugate gradient algorithm, as in Landau gauge. Thus, the inversion of the above FP matrix has been
done using [R1]] the bi-conjugate gradient stabilized algorithm, in the SU(2) case, and the general-
ized conjugate residual, in the SU(3) case. In both cases we used a point source [. Simulations
have been carried out with § = 2.4469 for SU(2) and 8 = 6.0 for SU(3), both corresponding [23]
to a lattice spacing a ~ 0.1 fm. Preliminary results for these two gauge groups have been presented
in Ref. [[[1}, [[2]. One clearly sees from these data that the ghost propagator in LCG agrees, within
error bars, with the ghost propagator in Landau gauge (for the same lattice setup). This is in qual-
itative agreement with the theoretical predictions of Ref. [P4] but in disagreement with the finding

of Refs. [[I§, 3.
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5. Conclusions

The numerical evaluation of the ghost propagator in LCG, using the FP matrix .# f"(x, y)
defined in Eq. (B.3)), seems feasible. For the lattice setup considered in the simulations presented
in Ref. [[[1, [[2], the results are essentially in agreement with the corresponding data in Landau
gauge. Of course, simulations at larger physical volumes and different gauge-fixing parameters &
should be done before one can conclude that this is indeed the case. At the same time, it would be
important to extend these numerical simulations to the cases 2) and 3), discussed in Sec. f|. Finally,
one should try to understand how the first Gribov region Q can be defined in lattice minimal LCG,
i.e. if the GZ approach can be extended to the LCG on the lattice.

Acknowledgments

A.C. and T. M. acknowledge partial support from CNPq. A.C. also acknowledges partial
support from FAPESP (grant # 16/22732-1). The research of D.D. and M.R. is supported by
KU Leuven IF project C14/16/067. O.O. and P.J.S. acknowledge the Laboratory for Advanced
Computing at University of Coimbra (http://www.uc.pt/1lca) for providing access to the
HPC computing resource Navigator. P.J.S. acknowledges support by FCT under contracts
SFRH/BPD/40998/2007 and SFRH/BPD/109971/2015. The SU(3) simulations were done using
the Chroma [] and PFFT [@] libraries.

References

[1] J. Greensite, An introduction to the confinement problem, Lect. Notes Phys. 821 (2011) 1.

[2] N. Vandersickel and D. Zwanziger, The Gribov problem and QCD dynamics, Phys. Rept. 520 (2012)
175.

[3] M. A. L. Capri, A. D. Pereira, R. F. Sobreiro and S. P. Sorella, Non-perturbative treatment of the

linear covariant gauges by taking into account the Gribov copies, Eur. Phys. J. C 75 (2015) no.10,
479.

[4] M. A. L. Capri et al., Exact nilpotent nonperturbative BRST symmetry for the Gribov-Zwanziger
action in the linear covariant gauge, Phys. Rev. D 92 (2015) no.4, 045039.

[5] L. Giusti, Lattice gauge fixing for generic covariant gauges, Nucl. Phys. B 498 (1997) 331.

[6] L. Giusti, M. L. Paciello, S. Petrarca and B. Taglienti, Lattice gauge fixing for parameter dependent
covariant gauges, Phys. Rev. D 63 (2001) 014501.

[7] A. Cucchieri, T. Mendes and E. M. S. Santos, Covariant gauge on the lattice: A New implementation,
Phys. Rev. Lett. 103 (2009) 141602; Simulating linear covariant gauges on the lattice: A New
approach, PoS QCD-TNT09 (2009) 009; A. Cucchieri, T. Mendes, G. M. Nakamura and E. M. S.
Santos, Gluon Propagators in Linear Covariant Gauge, PoS FACESQCD (2010) 026.

[8] A. Cucchieri, T. Mendes, G. M. Nakamura and E. M. S. Santos, Feynman gauge on the lattice: New
results and perspectives, AIP Conf. Proc. 1354 (2011) 45.

[9] P. Bicudo er al., Lattice gluon propagator in renormalizable & gauges, Phys. Rev. D 92 (2015) no.11,
114514; Gauge fixing and the gluon propagator in renormalizable & gauges, PoS LATTICE2015
(2016) 317.



Ghost Sector in Minimal LCG Attilio Cucchieri

[10]

(11]

[12]

[13]

[14]

[15]
[16]

[17]

(18]

[19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

L. Giusti et al., Results on the gluon propagator in lattice covariant gauges, Nucl. Phys. B Proc.
Suppl. 94 (2001) 805; L. Giusti et al., Quark and gluon propagators in covariant gauges, Nucl. Phys.
B Proc. Suppl. 106 (2002) 995.

A. Cucchieri et al., Faddeev-Popov Matrix in Linear Covariant Gauge: First Results,
arXiv:1809.08224 [hep-lat], to appear in Phys. Rev. D.

A. Cucchieri et al., Lattice Computation of the Ghost Propagator in Linear Covariant Gauges,
arXiv:1811.11521 [hep-lat], to appear in PoS LATTICE2018 252.

E. M. S. Santos, QCD na rede: um estudo ndo-perturbativo no calibre de Feynman, doctoral thesis (in
Portuguese), University of Sdo Paulo (2011), http://www.teses.usp.br/teses/disponiveis/76/76131/tde-
19102011-135900/en.php.

L. Giusti et al., Problems on lattice gauge fixing, Int. J. Mod. Phys. A 16 (2001) 3487.
V. N. Gribov, Quantization of Nonabelian Gauge Theories, Nucl. Phys. B 139 (1978) 1.

D. Zwanziger, Fundamental modular region, Boltzmann factor and area law in lattice gauge theory,
Nucl. Phys. B 412 (1994) 657.

A. Cucchieri and T. Mendes, Critical slowing down in SU(2) Landau gauge fixing algorithms, Nucl.
Phys. B 471 (1996) 263; Study of critical slowing down in SU(2) Landau gauge fixing, Nucl. Phys. B
Proc. Suppl. 53 (1997) 811; Critical slowing down in SU(2) Landau gauge fixing algorithms at beta =
infinity, Comput. Phys. Commun. 154 (2003) 1; Gauge Fixing in Lattice Minimal Linear Covariant
Gauge, in preparation.

M. Q. Huber, Gluon and ghost propagators in linear covariant gauges, Phys. Rev. D 91 (2015) no.8,

085018; A. C. Aguilar, D. Binosi and J. Papavassiliou, Yang-Mills two-point functions in linear
covariant gauges, Phys. Rev. D 91 (2015) no.8, 085014.

F. Siringo and G. Comitini, Gluon propagator in linear covariant RE gauges Phys. Rev. D 98 (2018)
no.3, 034023.

R. Alkofer and L. von Smekal, The Infrared behavior of QCD Green’s functions: Confinement
dynamical symmetry breaking, and hadrons as relativistic bound states, Phys. Rept. 353 (2001) 281.

Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia (USA), 2003, 2nd edition.

P. Boucaud et al., Asymptotic behavior of the ghost propagator in SU3 lattice gauge theory, Phys.
Rev. D 72 (2005) 114503; A. Cucchieri, A. Maas and T. Mendes, Exploratory study of three-point
Green’s functions in Landau-gauge Yang-Mills theory, Phys. Rev. D 74 (2006) 014503.

A. Cucchieri, T. Mendes, O. Oliveira and P. J. Silva, Just how different are SU(2) and SU(3) Landau
propagators in the IR regime?, Phys. Rev. D 76 (2007) 114507.

F. Siringo, Gluon propagator in Feynman gauge by the method of stationary variance, Phys. Rev. D
90 (2014) no.9, 094021.

A. C. Aguilar and J. Papavassiliou, Infrared finite ghost propagator in the Feynman gauge, Phys. Rev.
D 77 (2008) 125022; M. A. L. Capri et al., More on the nonperturbative Gribov-Zwanziger
quantization of linear covariant gauges, Phys. Rev. D 93 (2016) no.6, 065019.

R. G. Edwards and B. Joo [SciDAC and LHPC and UKQCD Collaborations], The Chroma software
system for lattice QCD, Nucl. Phys. B Proc. Suppl. 140 (2005) 832.

M. Pippig, PFFT - An extension of FFTW to massively parallel architectures, SIAM J. Sci. Comput.
35(2013) C213.



