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1. Introduction

The analytical explanation of quark and gluon confinement has been a big challenge in recent
decades. At low temperatures (or in the infrared regime, IR), where confinement happens, the cou-
pling constant g2 is large, hence the perturbative formalism can not be used in this regime. This
research main focus has been on the gluon propagator and also ghost propagator in the IR. The
gluon propagator is suppressed to a nonvanishing value at zero momentum violating the positivity
and the ghost propagator is not enhanced at at large volume according to the lattice data [1]. A
possible analytical explanation for this behavior is gotten through the adding of dimension 2 con-
densates to the Gribov-Zwanziger (GZ) formalism, yielding to so-called Refined Gribov-Zwanziger
(RGZ) framework [2, 3] that fits with the lattice data quite well [1].

In this present study, the analysis of a non-trivial minimum of the effective action, which
leads us to a dynamical transformation of the GZ action into the RGZ action, has been done in the
presence of the <AhAh> and (@ @) condensates at one-loop following earlier steps of [4], suitably
generalized to respect BRST invariance following recent developments by some of us in the field.

In this proceeding, we highlight a few steps, a comprehensive paper will be presented else-
where.

2. The Gribov-Zwanziger action in the linear covariant gauge

In the IR region, the Gribov copies appear. Since the coupling constant g2 is large, these copies
can not be eliminated [5]. A way to work around this problem is to restrict the functional integral
to a specific region Q) in field space, a solution proposed by Gribov using the Landau gauge [5].
Moreover, this solution given by Gribov can be generalized to linear covariant gauge [6]:

Q={A%; 0 AL =iab?, MEP(AM) = -2, DA (AM) > 0). (2.1)

whereby the Hermitian Faddeev-Popov-related operator, M@P (A") = —5aP92 4 gfabe (Ah)ﬁau,
is positive. In (2.1), At is a non-local power series in the gauge field, gotten from the minimization
of the functional f 4 [u] along the gauge orbit of A, [7, 8, 9],

falul = rgiL?TrJd‘leﬁAﬁ,

AY = uiA éuTapu. 2.2)

A local minimum is found and given by

0,0
AE: <6uv = V)d)v» auAE:())

2
v = Ay—ig [530A AL |+ 3 | 570,09, 3504 | +0(A%). 2.3)
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Here we highlight that AL‘ is gauge invariant order by order [6]. The field ALL can be localized by
introducing an auxiliary Stueckelberg field £¢ [6, 10],

i
Al = (AM)aTe :hTAﬁTah—l—ahTauh, (2.4)
while
h=el9 E.aTa) (2.5)

Now, the local gauge invariance of AH under a gauge transformation u € SU(N) can be obtained
from

houh,  hiohfu, Ao ufAu+ —ufou 2.6)
g

Now, considering the BRST invariance, the Gribov-Zwanziger action in the linear covariant gauges,
the total action is given by
S=Sym+Sgr+Sgz+S;., 2.7

whereby Sy is the Yang-Mills action,

1
Sym = 4Jd4xFﬂvaw, (2.8)

Sgr is the Faddeev-Popov gauge-fixing in linear covariant gauges,
SGF:Jd“x (500 +ib% 0, AL +2°0,DE (A)C), 2.9)

o being the gauge parameter and o« = 0 in Landau gauge; Sgz is the Gribov-Zwanziger action in
its local form,

Scz = | d'x [0{0, DI (AN ok — @0, DI (AM)wohe)]

d
—v%g J d*x [fﬂbc (AM)E@ps + P (AM) PR + ; (NZ—1 )yz] ,  (210)
with (@}1¢, @{i°) a pair of complex-conjugate bosonic fields, (W€, w{i®) a pair of anti-commuting
complex-conjugate fields; and y the Gribov parameter which is dynamically fixed by a gap equation
that gives us the horizon function [11, 12],

2

- Y
(P (AM (@RS +@R%)) =2d(N2—1J9—2, @.11)
which can also be rewritten as [4]
or
whereby I is the quantum action defined by
e = J[dd)]es. (2.13)
The last term from (2.7),
Se :Jd4x e (AMS (2.14)



BRST invariant d=2 condensates in Gribov-Zwanziger theory Caroline Felix

ensures, through the Lagrange multiplier ¢, the transversality of the composite operator (Ah)ﬁ,
au(Ah)ﬁ =0.

The action S, (2.7), enjoys an exact BRST invariance, sS = 0 and s* = 0 [6]

sAL=-D3%P,  sc®= %f“bccbcc,

sc* =1ib?, sb® =0,

scpﬁb =0, swﬁb =0,

sd)ﬁb =0, s@ﬁb =0,

s =0, S(Ah)ﬁ:(),

sh¥ = —igc®(T4)*nM, (2.15)

3. Refined Gribov-Zwanziger Action

The BRST invariant d = 2 condensates, (Af; | Af ) and (@3 @aP), cause non-perturbative
dynamical instabilities disturbing the Gribov-Zwanziger formalism [2, 3, 4]. (@ ﬁb o) ﬁb> guarantees
that the gluon propagator is non-vanishing at zero momentum, and (AﬂAﬁ} assures to fit the result
with the lattice data [4]. The refined Gribov-Zwanziger action (RGZ) is obtained adding these
condensates to the GZ action via the local composite operator (LCO) formalism, see [4]. The
operators A"AM and @ @ will be added to the action via two BRST invariant bosonic sources T and

Q.
st=0 and sQ=0. 3.1

From here, we opted for the Landau gauge dA = 0 for convenience, so that we can work with
AM = A, as formally proven in [6]. Then, the action with these operators is written as

L=S5S+SA2+Spp + Svacy (3.2)
whereby S is given by (2.7) and we also have
Spz= JdQXEAﬁAS,
Spe = JdDXQ@ﬁC‘PﬁC»
Svac = —Jerx <§T2 +axQQ +xQT> . 3.3)

The parameters o, x and ¢ are the LCO parameters which guarantee that the divergences of the

kind (AZ(x)A? (y)>X _yy Ctc. can be properly dealt with, see [4].

4. The Effective Action Calculus

In order to get the effective action, we have written the energy functional as

e WU = J[d(D}ez, (4.1)
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where X is given by (3.2).

The action X, (3.2), has three terms quadratic in the sources and they should be removed to
facilitate calculations and interpret our results in terms of the vacuum energy. The easiest way to
remove these terms is by introducing two auxiliary fields o7 and o, via two identities

- J[DUH e/ ax(o1+5A2+BQ er)”

1= J[Daz} e+%fdd"(02+a@p+éQ+§Az>z

, 4.2)
multiplying the integral in (4.1). If we choose
VZeC
b= ZQQZXXXer/Z’
V2t
¢ = Zeo/Zeeln /2,
d= Zo ue/?, (4.3)
72 ~2
\/ X —2Zan
23 X* -
e = ZQQ\/ZX;C—ZZ(X(Xoc w2
Fo_Za 2:QZecC— 2 lxxX e/2

Loy

V ZCCC ZQQ \/Zixxz—zzcxchCCCOC

we can remove the quadratic terms in sources. In the MS scheme and at one loop, the Z factors are
given by [4]

Zp = 1+1;1]:Ti, ZC:ZCCZ%T:1_?]]:7?ZZ€’ ZCC:]+2321]:7?22<5’

2 2 2
Zo =1, Z.q=0, Za:zmzéQ:Hf]]:fzze,
zw:1+5631]:7‘322€, z@:z©2251zA‘/2=1+312£22€. (4.4)

Therefore, (4.1) becomes
—W(Q,1) | d - b? 2
e = [DO][Doy 3lexp _SGZ_E dx | 2co1t+203Q 1—é—2 o]
1, b f )
—é—z(03—2b01 03)+ <<a—é) <G1>+E <03)> A

o | ol

2 (6<o1>—<cs>)<pcp)} , 45)
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where
03 =01b—o038e. (4.6)

So far, all LCO parameters, sources and fields have been renormalized, except the auxiliary fields
0’s. Analyzing the term Co1T = Zrc\/Z¢cCu ¢/2 07T that appears in Eq.(4.5), it is easy to see
that this field is indeed infinite, thus it also must be renormalized. As the Z-factors are infinite, if
o1 would be finite, then the quantity multiplying T would be infinite. This would not make sense as
a physical (and thus finite) local operator O. The original oy field should then be infinite in order
to get a finite quantity multiplying the finite source T. It is then natural to define a renormalized
finite field 0 by 0] = Z\/Z¢c01 = \/ZO‘] . Regarding o3, the term 03Q in Eq.(4.5) teach us,
knowing that Q is finite, that o3 is already finite and thus should not be renormalized. In terms of
the finite fields 0 and 03, the energy functional now reads :

72

W(Q»ﬂszjmm][@m,s}exp —st—”ddx —2\/2011—1—203(2( b>z
C

/ i / 3
1 03 —2b 03 <d fP) <Gl> +£<O‘3> A?
VZe VZe

24 E<U1>—<os> 90| |- (4.7)

In this expression, all LCO parameters, sources and fields are now finite, and infinities are only

present in the renormalization factors Z’s, explicitly written or present in the coefficients 4, ..., f.
At one loop, X =0, Zrq = 0 [4] which implies that b =f=0, then 03 = —&0,. Now, by analysis
of the term 03Q = —€0,Q in (4.7), a same reasoning as above for oy shows that o is infinite and
should be renormalized defining a new finite field Gé through cré =20QVZxa02 =/ Z;crz.

Hence, the energy functional in terms of the finite fields 0} and o and with one-loop coefficients
reads :

1 o!? 0'/2
_W(QT—J[D®][DG12}exp —SGZ—ZJddx J 2 +a

f f

—zﬁoqurz\/—zomgQ) ] (4.8)

In this expression, infinities are now localized in four different places, only in the renormalization
factors Zc, Z(X, and in those hidden in @ and d.

In order to have an expression of the form mTZAZ — M2 @, we defined the effective masses,
m? and M2, respectively linked to (AA) and (@) by:

2_ @ o 17 Ng? 13Ng?
m- = ZE<G]>_<]+6]67I26) SNz < H+0(g? 4.9)
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d 35 Ng? 35Ng?2
M? = DN=—(1-= ) +0(gh). 4.10
— <0-2> < 6 167‘(2€> 48(N2—1)2 <02>+ (9 ) ( )
Ly
where the last equalities follow from considerng the first order term of the Z-factors in MS scheme
and(x_ﬂ:_mandc_ioz9(N [4]
g’ 35N g2 2 13N g2

The ghost fields c, €, w, @ give us just an overall factor. Now, to integrate over the ¢ and @
fields, we proceed as follows

-—ab __jjab ; :ysab ab _jjab __ :y/ab
G =Up7+iVED, o7 =ULT —1VEo. 4.11)
Then
J[@u)V] ei‘l‘ddx[v&bPﬁs,bdvﬁd+uﬁbP&s,bdus’dizgYZfabcAﬁch} _
1 d 2.,4aap—Tlgabab
= eyl NS AIRREAL, @12
c )
TRY;
with

PP = (97— M?)59¢5°95 . (4.13)

Therefore, the first contribution I', to the effective potential is obtained by :
Qlq =IndetP$Pd =Trin PS4, (4.14)

resulting in

o= (N2—1)2 mtomt M2 ome
¢ Cedn? 82 2 8m?

_ 35Ng? (03" (-5 b (- ) ) o
)¢ B

)y (4.15)

=}

48 4mz e 272 48(NZ 1

whereby [i is the energy scale. The second contribution I, to the effective potential comes from
the gluon field A ;. The quadratic part of the action containing A, is

e 2/ AXAIRIIAT (4.16)
where
2Nvy“g 1
b b 2 2

i =st (<ot emt- 2V s oo (L) am

Therefore, :

:

Qry, = 2lndetRaC bd ETrlnRaC bd (4.18)

resulting in
_ (N2=1) (3 5 3N2=1) [ 5. [—x 5 [ —x2
rb— W E+Z ( 4’Y g N) W X]ll’l F +X211’1 F

2
~M*In <MZ>] , (4.19)
T8
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where x; and x, are the solutions of the equation x? + (M2 +m?2)x+M?2m? +A% =0,

1
X1 =—> ( 2+M2+\/(m2—M2)2—47\4> :
1
X2 =5 ( 2+M2\/(m2M2)2+4)\4> . (4.20)
The third part of effective potential I'; is from the Gribov-Zwanziger action,
Te = —dyg(N%2—1). 4.21)
Knowing that Z,,» = Z; /ZZ;\1 " we get
. 3 g°N
vE=22v", with 22, =1+ 512?, (4.22)
hence 5 5
3N 3N
Me = (N2—1)y? (—4+ 32722 — 87[296 ) +0(gh). (4.23)
And the last contribution comes from (o} >2 and <Gé>2 ;
1/1 21 2
g === OJ — = OJ >
2 2
(01" (02)" 13 Ng? , ;12,35 Ng? 2 o 4
= — — — O . 4.24
2 2 "6 Tenre (91 g gnze (02 09T 29

The full effective potential given by I = T'q + T, 4+ I'. 4Ty is finite when e — 0 at first order in g2.
Therefore, it can be written as

ONZ—1)m?* 48(NZ—1)2M* 2A%(NZ2-1)

2 2 24y R I
Fm5MAAD = 30g7 2 35Ng2 2 Ng2
N2 —1 4,2 4 2 4 2 3 M? 4
3N2_1 4 4 4 2 2 2 2\2 4
in | m2+M2+\/(m2—M2)2—47\4
2ii?
3N2_1 4 4 4 2 2 2 2\2 4
ln | m2+M2—\/(m2—M2)2—47\4 . (4.25)
2[i?
with
13Ng?
2 [ 2NYT g
=\ oz 1) (o1), (4.26)

35Ng? ,
M2 = — /m<oz>. 4.27)



BRST invariant d=2 condensates in Gribov-Zwanziger theory Caroline Felix

and A* = 2Ng?y*. The next step is to analyze the gap equations given by

or or or
oM?2 ’ om? ’ A4 (4.28)
Unfortunately, an acceptable result was not obtained in this particular scheme. The resolution was
to not fix a scheme, we rather rewrote the effective potential in a general scheme as has been done
in e.g. [13]. Details of this procedure will be published elsewhere. The effective potential (4.25),

in general scheme, becomes

Fgen(m?, M A% bg) = m M*—

9N —1) 4 24(N2—-1)2 , 2(N*-1)*Mm* o M?
26Ng? 35Ng? 1672

N2 -1 N2 -1
—2\* — 2\t (bo—1)

Ng2 T6m2
3N2—1 (5, 4 4 mMAM2A  [mZM?+2?
SO —2h - 1
4 T6n2 {4(’“ M -2)) 2 “[ e }
AT (mZ—M2)2 M?2
—l—(mz—l-Mz)\/47\4—(m2—M2)2arctan[\/ mZ(TMz ) +In [ﬁz] M4}, (4.29)

b being a parameter related to the chosen scheme for the coupling. It was fixed, at the end, by the
matching our values for the complex conjugate poles masses of the transverse gluon propagator to
those estimated from lattice data [1] when the gap equations are solved for. The effective masses
m? and M? and the Gribov parameter y> were gotten in function of the parameter bg and i in
units A =1, N = 3 and also with N = 2. Notice that these poles masses are gauge and scheme inde-
pendent [6], so we benefitted from this to fix the parameters by and [t by using a minimal external
lattice input to determine the “optimum scheme”. We got by = —3.643 and [t = 1.429. With this
procedure, we obtained a reasonable value for the coupling constant, namely 0.382. Therefore, in
this case, the perturbative result is relatively trustworthy. The Gribov parameter y? is 0.637 and the
vacuum energy is —26.955. The Hessian determinant is positive and also the second derivatives,

O Tgen =1.668 OTgen —0.216 _0%Tgen

=0.011. (4.30)
aMZZ solved om? solved dMZom? solved

Then, the solution does correspond to a minimum.

The future step will be to extend this research to finite temperatures and to study if the decon-
finement transitions reflects itself in a change in the propagator behavior and to check if, with the
Polyakov loop added to the game, we observe the transition also in that order parameter.
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