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Figure 1: Participation ratio of the low Dirac modes in high-temparatQCD (herel ~ 400 MeV), ob-
tained on the lattice with staggered fermions. Data from Figf].

1. Introduction

Itis well known that QCD at finite temperature undergoes a deconfinidglainally-restoring
transition, or, more precisely, that QCD displays an analytic crossoveeiratigeT ~ 145-165
MeV in which both confining and chiral properties change radically. T$eugocritical tempera-
tures for the chiral and deconfining transitions, defined from the posifitime peaks of the chiral
susceptibility and of the quark entropy, respectively, are equal witharef],[2]. For the sake of
definiteness we will také. ~ 155 MeV. The close relation between these two very different phe-
nomena is not unique to QCD, but is found also in other QCD-like theories,dige SU(3) pure
gauge theory in 3+1[J[3] and 2+1 dimensiofls [4], ad= 3 QCD with unimproved rooted stag-
gered fermions oiNr = 4 lattices [B]. The nature of this relation is however not fully understood
yet.

Itis also well known that chiral symmetry breaking originates from the ecdation of eigen-
values of the Dirac operator near the oridih [6]: the spectral densityiie finthe origin belowr,
while it vanishes above it. The question is then if such an accumulation, ordkéhareof, is
related to the confining properties of the theory. A possible link, or at kedsol to study the
relation between deconfinement and chiral symmetry restoration, is a tt@rdptenon that also
takes place af., namely the localisation of the lowest Dirac modes.

It is by now well established that while beldly all the Dirac modes are extended throughout
the whole system, abovk the low modes are localised, up to a temperature-dependent critical
point A¢(T) in the spectrum where a localisation/delocalisation transition, or Andersusittom,
takes place[[7[]9]9, 1§, ]1[L,]12] 13]. The simplest way to observe latiatisis to measure the
participation ratio (PR) of the eigenmodes, which measures the fractioracéme effectively
occupied by a mode. For normalised eigenvectp(s) of the Dirac operator, computed on a
hypercubic lattice of spatial volumé= N2 and temporal sizdlr (in lattice units), one has

PR=1[ er<x>w<x>\2] B (L.1)
=08 |2 , .

where ¢/T(x)y(x) denotes the scalar product in colour and Dirac space. As the volume of the
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system is increased, the PR remains constant for an extended mode, wjoiés ito zero for a
mode localised in a finite region. Localisation of the low modes in high-temper@@Qi2 can be
seen in Fig[]1.

In this contribution, after a brief discussion of the main tools required in theysfi lo-
calisation, | will review what is known about localisation in QCD. | will then diss a possible
mechanism for localisation, and how this mechanism relates to the confinirghaabiproperties
of QCD. I will then proceed to discuss localisation in QCD-like theories in 3trfedsions, briefly
discuss the possible role of topology, and show some preliminary resul@brlike theories in
2+1 dimensions.

2. Numerical studies of localisation

The main tools required to study localisation in QCD are the theory of disatd¢aeiltoni-
ans, Lattice Gauge Theory, and Random Matrix Theory, which | nowlyprieview.

2.1 Disordered Hamiltonians

Disordered Hamiltonians aim at describing systems containing some formasfidis The
most famous example is the Hamiltonian of the Anderson model (AM) for elecindtdlirty” con-
ductors [I}4], which consists of the usual tight-binding Hamiltonian supplésdenith a random
on-site potentiaky, mimicking the presence of impurities in the crystal,

3
HYY = &g+ > (Scipg+ S ag)- (2.1)
u=1

In the simplest version of the model, tegare drawn from a uniform distribution on the interval
[—%,+%], whose widthV measures the amount of disorder in the system. While in the absence
of disorder (W = 0) the electron states are delocalised Bloch waves, as soon as somerdsprd
into the systemW # 0) localised modes appear at the band edge, beyond a critical eagWyy,
called “mobility edge”. As the amount of disorder is increadegdW) moves towards the band
center, until a critical disordaf is reached: foW > W. all modes are localised, and the metal
becomes an insulator. As one crosses the mobility edge the system ursceggm®nd-order phase
transition with divergent correlation lengd{E) ~ |E — E¢| ¥, known as Anderson transition. The
analogue ofe;(W) in QCD is A¢(T), with temperature playing the role of control parameter of
the amount of disorder in the system. By contrast with the AM, in QCD all the snbdeome
extended belowig.

The AM discussed here is the simplest one, with diagonal disorder ortlyther versions
exist. One thatis relevant to us is the so-called unitary Anderson modéfijlkhich includes also
off-diagonal disorder in the form of random phases in the hopping temmsicking the presence
of a random magnetic field,

3 .
HIM = &g+ S (Sepy+ & ag€®,  @x=—&y. (2.2)
=1

Here “unitary” refers to the symmetry class in the sense of Random Matiorjhdiscussed
below. The AM of Eq.[(2]1) belongs instead to the orthogonal class. fiaege in symmetry in
turn affects the critical behaviour at the Anderson transition.
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2.2 Lattice Gauge Theory

Most nonperturbative studies of QCD are based on Lattice Gaugeyfigem), which deals
with the gauge theory functional integral in Euclidean space discretisedfioite lattice, which
is typically a hypercube of spacirgof sizesNs and Ny in the spatial and temporal directions,
respectively. Fermion fieldg/(n), ¢(n) live on the lattice sites, while gauge fields\,(x) are
replaced by parallel trasportetd, (n) = Pexg(ig 2" A, (X)dX?} living on the lattice edges
(n,n+ ). Periodic boundary conditions are usually imposed on the fields in the spiagietions.
At finite temperature the lattice siz¢ T = aNy in the temporal direction is kept fixed in physical
units, and appropriate boundary conditions are imposed on the fieldsdjgefor bosons and
antiperiodic for fermions). A detailed review of LGT is way beyond the soofthis paper. There
are however two points worth emphasising. The first important point is thGih the gauge
theory functional integral turns in practice into the partition function of a siegissystem,

Z:/@U/@w/@lﬁefsgaugéu]*lﬁ(Dlat[UHm)ll—" (2.3)

where the integration extends over a large but finite number of degrdesedbm. The infinite-
volume limitV — o and the continuum limia — 0 are eventually taken. HeSgaugdU | andD)a[U]
are respectively a discretised version of the Yang-Mills action and of itee Dperator. The case
I will be focussing on is that of the staggered discretisation,

[Dstadmn’ = %Zu r’u(”) [Uu(n)énﬂln’ _Uu(n_ I:I)Ténfﬂ.n’] ) nu(n) = (_1)za<“ ., (2-4)

The second relevant point here is that the staggered operator istijugts the Hamiltonian of a
quantum mechanical system with purely off-diagonal disorder, pravigethe gauge link,(n),
and so the Dirac operator can be studied just like a disordered Hamiltonian.

2.3 Random Matrix Theory

Random Matrix Theory (RMT), quite unsurprisingly, studies matrices witldoan entries,
examples of which are the AM Hamiltonian and the lattice Dirac operator. RMEhemtypically
deals with dense matrices, for which certain statistical properties of thérspeare universal,
depending only on the symmetry class of the matrix ensemble. An importantrsadiygoperty
of dense RMT ensembles is the distribution of the unfolded level spacingshieedistance be-
tween consecutive eigenvalues divided by the average level spadimgrielevant spectral region.
The unfolded spectrum is defined by mapping the eigenvalugsA; — x; = f)“ dA p(A), where
p(A) = (3n,0(A —Apn)) is the spectral density, and..) denotes ensemble averaging. After un-
folding, the spectral density becomes identically 1 throughout the speciftmunfolded level
spacing distribution (ULSDP(s) is the probability distribution of = X1 — X over the matrix
ensemble. This quantity can be computed analytically for the so-called Gaessiambles, and
by universality it describes the unfolded spectrum for all models in angsyenmetry class. The
ULSD is very well approximated by thé/igner’'s surmiseP(s) = aecS, with class-dependent
constantsa,b,c. By contrast, for independently fluctuating eigenvalues (Poisson stgtisties
findsP(s) = e
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Figure 2: (Left.) Dependence of the mobility edge on temperature ilDQEIgure from Ref. @o]. (Right.)
Scaling function foil, at the Anderson transition in QCD (see text for details).adeam Ref. ].

For the sparse matrices we are interested in, it turns out that the spé¢atistics depend
on the spectral region, and are connected to the localisation propertibe efgenmodes: ex-
tended modes obey the appropriate type of RMT statistics given the symmédttles model,
while localised modes obey Poisson statistics, fluctuating independently. drimigeation can be
used to determine precisely the position of the mobility edlgby means of a finite-size-scaling
study of spectral statistic§ |15]. Indeed, given a dimensionless quafitityL) derived from
the ULSD and computed locally in the spectrum, i.e., in an infinitesimal neighbodrbbA,
one expects under the usual scaling hypothesis that in the vicinity ibidepends on the system
sizeLas?d(A,L) =0(&(A)/L) = O(]A — Ac|7Y/L). Analyticity in a finite volume then imposes
O(A,L) = f((A —Ac)LYY). This relation can be used to determiheand the critical exponent
v, as well as the critical valué; = ¢ (A, L), which is volume-independent, and expected to be
determined by a universal critical statistics. A convenient observabis twrt to be the integrated
ULSD,

l, —/?dsp(s), (2.5)

wheres is the crossing point of the appropriate Wigner’s surmise and the expalfemction.

3. Localisation in Lattice QCD

As already anticipated in the Introduction, while all the Dirac modes are dsedan the
low-temperature phase of QCD, abdvehe low modes are localised far< A¢(T), with a second-
order phase transition (Anderson transition)gfT ). Localised modes have been observed with
different fermion discretisations (staggergd[[4, 10], overfpp J8, d@inain wall [IP]). Most quan-
titative studies have been carried out with staggered fermions, on whiithnhestly focus here.

3.1 Numerical results

The dependence of the mobility edge on temperature was studied in[Refufify 2+1
flavours of 2-stout improved rooted staggered fermions with physicakouasseqJ1]. As can be
seen in Fig[]2 (left)Ac(T) extrapolates to zero at a temperature compatible WittSince it is a
feature of the spectrum, the mobility edge is expected to renormalise like a mpaa|[Ip[ 0],
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and sor% with myq the light quark mass is expected to be the physically relevant, renormalisation-
group-invariant quantity. This ratio seems indeed to be independent tHttive spacing, so that
localisation is expected to survive the continuum limit.

Critical properties at the mobility edge were studied in Hei. [11] with the sanesdf/f@rmions
on Ny = 4 lattices a3 = 3.75, corresponding to a lattice spacingeof 0.125 fm and a temper-
ature of T = 394 MeV= 2.6 T.. By means of a finite-size-scaling analysis [see fig. 2 (right)] the
critical exponent was found to be/gcp = 1.46(3), in agreement with that obtained for the 3D
UAM [[7]. Further studies showed that also the multifractal exponentsactexising the eigen-
vectors at criticality match those of the 3D UA1]18].

3.2 Polyakov lines, the “sealislands” picture and the Dirac-Andersoidamiltonian

It is a bit surprising that QCD and UAM share the same critical properti¢iseafnderson
transition. While the unitary symmetry class is indeed the appropriate one fgestal fermions,
and the dimensionality of high-temperature QCD is indeed expected to bestkfiom 4 to 3, at
first sight it is hard to spot any source of 3D diagonal disorder. Tdggered Dirac operator has in
fact only off-diagonal 4D disorder, for which different critical perties are expected.

The source of diagonal disorder was first identified by the authorsetf[R9] in the spa-
tial fluctuations of the Polyakov lines. For a perfectly ordered conftiguravith Polyakov lines
aligned along the identity and trivial spatial links, the spectrum displaysra gia@ corresponding
to the lowest Matsubara frequency. For realistic configurations theiongdis partial, with a “sea”
of ordered Polyakov lines and “islands” of fluctuations away from thatitle so the gap turns into
an effective gap, below which the spectral density is small. Living on tHarlis” is “energeti-
cally” favourable, allowing to reduce the eigenvalue and penetrate thelgaprice to pay being
that the mode has to be localised in these “traps”. The argument was latedectzom SU(2)
to SU(3) in Ref. 2], and has been tested in several ways: on Sld(#garations[[19], in a toy
model for QCD [2], and most recently in QCD with domain-wll|[12] andrtagfermions [1B].

A shortcoming of this argument is that it does not explain why there is no latalisbelow
T.. The absence of islands cannot be the answer, since there is nothuanas islands in the AM,
which displays localised eigenmodes nonetheless. This is simply due to teagees fluctuations
in the disorder, which certainly are present in the Polyakov lines also inwhé&elmperature phase.
In fact, what one has belowl;. is an effectively 4D system with (relatively weak) off-diagonal
disorder, as one would expect by taking the Dirac operator at face.vdtor this system, no
localised modes at the band center are expected.

A step in understanding this issue is made by showing that the staggeradoopeformally
equivalent to a set of coupled 3D AMs [41] 22]. This is done by seipaythe temporal hoppings,
treated as an unperturbed, “free” Hamiltonian, from the spatial hoppiregged as the interaction,
and then diagonalising the free Hamiltonian. After diagonalisation of its freg {hee “Dirac-
Anderson HamiltonianH = —iDgtagreads

_ S (s s
Hyy = dyD(X) + Zl o LOxigViei () = S V- (R)]
i=

(3.1)
N1 on .

[D(X)]algbl = '74(2) Sinwak(z)éab@h [Vil(x)]ak.bl = ’\:::r Z) elm(l_k) [Uij(t,X)] ab -
t=
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HereUij are the spatial links in the “uniform temporal diagonal gauge”, or Polyajauge, de-
fined by the condition

L@ (%) SN ()
u4(t,2):[P(z)]NlT:diag<éwﬁT,...,e' N ) (3.2)

wheree®® a=1,... N, are the eigenvalues of the Polyakov lineXasubject to the condition
Y a@(X) = 0. The unperturbed eigenvalues are determined by the effective Massiibquencies,

Wak(R) = § (TT+ @u(X) + 271K) , (3.3)

where the indices correspond to the spatial®it®loura, and temporal momentuki=0,..., Nt —
1. One then finds preciselNt 3D AMs with diagonal disorder provided by the Polyakov line
phases through the effective Matsubara frequencies, plus offuglisorder coming from the
interaction. These models are also coupled by the interaction, and thetlstoénige coupling is
related to the correlation between time slices: the stronger the correlatione@tkemthe coupling.
Unlike the simple AMs discussed previously, the strength of the disordén (bagonal and
off-diagonal) is bounded here (the matridés;(X) can be shown to be unitary), so one cannot
simply induce localisation by increasing the noise. However, in the two plod§gSD the nature
of the disorder is different. In the disordered phase there are weedations among time slices,
and no structure in the diagonal noise, so strong coupling of the AMs acwinelated diagonal
noise. In the ordered phase there are strong correlations among timedsiects ordering of the
Polyakov lines, which also provide a “sea” in which “islands” of convahlecalising centers are
found. This implies weak coupling of the AMs and correlated diagonal desoStudies in a QCD-
based toy mode[]21] show that both the correlations of time slices and therjme of islands are
needed to localise the low modes.

3.3 Chiral symmetry restoration and localisation from deconfinemetf?

It is now time to ask the important question: how are deconfinement, chiral syynrastora-
tion, and localisation of the low modes related? Although | cannot give aidefinswer, | can at
least list a few points that the answer should address.

1. Deconfinement changes the effective dimensionality of the Dirac-Andexystem and cre-
ates an effective gap in the spectrum.

At low temperature the AMs are strongly coupled, so the temporal momenturfediwdly one
more dimension, and the Dirac-Anderson system is then effectively 4iB.i§ hot surprising, but
then there is nothing to gain in recasting the Dirac operator in the Dirac-8oddorm, and the
purely off-diagonal nature of the disorder is already captured in thaeldsrm of the staggered
operator. At high temperature instead the coupling is weak, and the systemsaa collection of
3D AMs with diagonal disorder, weakly interacting with each other.

2. Localisation requires the presence of an effective gap and dieéopopthe AMs.

In the presence of an effective gap, islands are convenient fdidatian, but if the AMs are too
strongly coupled then the mixing of modes can prevent localisation. Thismeeesstood studying
the toy model of Ref.[[41].



Localisation, chiral symmetry and confinement Matteo Giordano

1 — T T T T T T T
PN L =248~

: L =32+~
\ L =48 —~
: L =56 —v— L

0.11 'y 0.25
4@ L

— :%é®@ ® B g 3}
g I va e 2 g a <

: ‘?éé ® e ° =]
, TGl , °

0.01F | v e 0.2
1 v A A e
\ A
1 v vV g £ A
| . .
l v

0.001 L Lt - ‘ e ‘ Ofeto——i b L L
5.095 5.1 5105 5.11  5.115 5.12 5125 5.13 .69 5.695 5.7 5.705 571
g

Figure 3: (Left.) PR of the lowest mode as a function of the couplingMgr= 3 unimproved staggered
fermions onNy = 4 lattices. Data from RemeS]. (Right.) Mobility edge asumétion of the coupling in
SU(3) pure gauge theory. Figure from R¢f][24].

3. Chiral symmetry breaking, i.e., a finite density of near-zero modesiresghat the AMs be
coupled, and that a finite density of small unperturbed modes be present.

Also this was understood studying the toy model of Hef. [21]: eigenmodestaccumulate near
the origin if there is no mixing of temporal momenta, and if there are not enowghrperturbed
modes.

The conclusion is that deconfinement seems to precisely provide the casdiiothe local-
isation of Dirac modes, and to remove the conditions for chiral symmetry imgealt the picture
above is correct, this should happen in gauge theories on quite germratlg, since nothing spe-
cific to QCD has been used: all that is required is the ordering of the Rmhyjales. If so, then
the coincidence of deconfinement, chiral symmetry restoration and localigdttbe low modes
should be a rather general phenomenon. This is what | am going to slisexis

4. Localisation in 3+1D QCD-like theories

In this section | review results about the connection between deconfihechaal symmetry
restoration and localisation in 3+1D QCD-like theories. To study this conmedti@ories with
a genuine phase transition are better suited, since they provide a clesituatibn with clearly
separated phases.

The first case | will discuss i8lf = 3 QCD with unimproved rooted staggered quarks on
lattices withNy = 4, studied in Ref.[[43]. For light enough quarks this model displays adfickir
phase transition at some critical value of the coupl[hg [5], with both the Polytmiop expectation
value and the chiral condensate showing a jump. Although this transition is & latte&fact that
does not survive the continuum limit, nevertheless this model consideiigddtattice spacing is a
perfectly good statistical model where we can test our ideas aboutfttemoent, chiral restoration
and localisation. In Fid]3 (left) I show the participation ratio of the lowest masia function of
the lattice gauge coupling for several volumes. While below the critical couplifgthe PR does
not change much with the volume, abggit keeps decreasing as the system size is increased,
meaning that the lowest mode is delocalised in the low-temperature phase ahsebbin the
high-temperature phase.
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Another interesting model is the SU(3) pure gauge theory, which hag arfilesr deconfining
transition, in correspondence of which the valence quark condersats s transition as well][3].
The authors of Ref[[24] have determined the mobility edge as a functioreajabge coupling,
and they have found that it vanishes at a value compatible with the citifsge Fig[B (right)].
Again, localised modes appear at deconfinement.

It is worth mentioning that the same behaviour was found in Ref. [22] in thentogel for
QCD of Ref. [2]1]. Localised modes were found also in the high-temperatuase in SU(2) pure
gauge theory[]9], although a detailed study of the mobility edge as a fundttemperature was
not performed.

5. Topology

In this section | briefly discuss the possible role played by topology in thdisatian of low
modes. The authors of Ref] [7] suggested that localised modes aredrielatee localised zero
modes associated to instantons at finite temperature. However, it wasifoRedl [24] that even
in the SU(3) pure gauge theory case, where the instanton density is higirein QCD, they
contribute for no more than 60% &}, and this fraction vanishes rapidly &sncreases.

The authors of Ref[]]12] made a different proposal. They showedttbdocalised low modes
prefer locations with larger action density and topological charge denditje the delocalised
higher modes show no particular preference. Moreover, they steghtiet the localisation might
take place in correspondence withandL-type monopole-instanton pairs. On the one hand, this
would perfectly match the best “islands” identified by the Polyakov-line megu, which the lo-
calised modes indeed seem to prefer. On the other hand, these topobdijgcas could be related
to confinement, as opposed to instantons. In any case, the role of to®kagyrom being under-
stood, and more studies are certainly required.

6. Localisation in QCD-like theories in 2+1D

In this section | discuss QCD-like theories in 2+1 dimensions. Based onemargl expec-
tations about the relation between confining properties and the Dirac wpedalimensionality
should play no particular role, as long as it is possible to have a decopfirase of the theory, and
as long as a localisation/delocalisation transition is possible. These thearidd sterefore show
a close connection between deconfinement, chiral transition and localie&ttmnlow modes.

However, quite a few things are different from the 3+1D case, mosbhatiae absence of chi-
ral symmetry in three dimensions. Of course one could simply check forzsenmspectral density
at the origin without bothering about symmetries, but, as a matter of factpfeven numbeN¢
of flavours one can reorganise the two-dimensional spinolg ji2 four-dimensional spinors, for
which au (N¢) chiral symmetry can be definefd [25]. One can then meaningfully ask wtigise
symmetry is spontaneously broken dowrlt@N;) — U (N /2) x U(N¢/2) by the formation of a
fermion-antifermion condensate, and, if so, if this happens at the ohsehfinement. Given the
doubling phenomenon, in this context one type of staggered fermionsscasitwo flavours.

Quite independently of this, one can also check whether localised modearagipdecon-
finement. The change in dimensionality adds a twist to the issue, since two sliaigaisions
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Figure 5. PR (left) and spectral density (right) in the 2+1D SU(3) pgeeige theory with an imaginary
chemical potential.

are special for Anderson transitions, with the existence and the natthe tBnsition depending
heavily on the details of the model.
In the remainder of this section | discuss some preliminary numerical results.

6.1 SU(3) pure gauge theory

As a first example | consider SU(3) pure gauge theory in 2+1D, studyagpactrum of the
staggered Dirac operator. Deconfinement and chiral restoratiorbeaveshown long ago to take
place at the same critical couplifig~ 15 [B]. Preliminary results show no trace of localised modes
deep in the confined phase, while localised modes are present at thed@fitee spectrum in the
deconfined phase, with a transition to delocalised modes at some criticalipoirg spectrum,
which is qualitatively seen to decrease with temperature [seg]Fig. 4 (left)].

An interesting aspect of the transition is that the curves of the spectratistait different
volumes, instead of crossing at one point, seem to merge beyond som@pbmspectrum [see
Fig.[4 (right)]. This is typical of BKT-type Anderson transitions, and taene behaviour is ob-
served in the analogous 2D ANT]26]. Definig as the merging point, one sees that it decreases
with . The expectation is that it will vanish B¢, although this cannot be confirmed at this stage.

6.2 SU(3) pure gauge theory with imaginary chemical potential

If one changes the typical value of the Polyakov line phases or the tehiymaradary con-
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volumes (see text).

ditions, one changes the typical effective Matsubara frequencidghas the effective gap in the
ordered phase. According to the “sea/islands” picture, this shouldtdlfe spectral density and
the localisation properties of the low modes.

One way to test this is to study SU(3) pure gauge theory in 2+1D including agiriarg
chemical potentialt in the Dirac operator, which in practice changes the temporal boundary co
ditions. According to the “sealislands” picture, increasinghould decrease the effective gap and
thus push towards larger spectral density near the origin, and morgloweld make localisation
harder. In Fig[]5 (left) | show the PR throughout the spectrum: it is cleritlincreases ag is
increased, so that the mobility edge is pushed down, until modes becomaleldc In Fig[p
(right) I show the spectral density, which is indeed seen to increasguwith

6.3 U(1) pure gauge theory

Another interesting case is 2+1D U(1) pure gauge theory, which lackbanfeature of QCD
that should not matter for the connection between deconfinement, ctgtatagon and localisa-
tion, namely the non-Abelian nature of the gauge group. Here in the deednghase the absolute
value of the Polyakov loop develops a nonzero expectation value, whilbasepfluctuates from
configuration to configuration, and therefore so does the effective lget P = (1/V) SnP(n) =
re'? be the spatially-averaged Polyakov loop on a given configuration. Bigdye localisation
properties of the lowest mode for different values of the phpsene finds that it is localised
for ¢ near zero, while it is delocalised fqraway from zero. This is also in agreement with the
“sealislands” picture.

7. Conclusions and outlook

Deconfinement, chiral symmetry restoration and localisation of the low modie dirac
operator are three closely connected phenomena, taking place at theesapseature in QCD
and similar theories. The “sealislands” picture and the Dirac-Andersproagh discussed in
Section[B, together with numerical results in a quite diverse variety of magdpprt the idea that
deconfinement is the driving force behind the other two phenomena.

Insights into these issues could come from the study of other QCD-relateglsnbdsides the
2+1 dimensional ones discussed in Secfipn 6. In particular, the effest phaginary chemical
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potential should be studied in the fully dynamical case in 3+1D. Moreovepdssible role of lo-
calisation should be studied in the SU(3) gauge theory with adjoint fermidreremeconfinement
and chiral symmetry restoration take place at different temperaturedlyfFtha possible role of
topology should be investigated in detail.
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