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Z3 gauge theory with matter at finite densities Kurt Langfeld

1. Introduction

The phasediagram of strongly interacting matter (as a function of the temperature T and the
chemical potential µ) is believed to be informed by the transition from colour-confined to de-
confined matter. However, our current understanding of this transition is derived from effective
considerations and model building that usually know little about quark confinement. I give two
examples: to reconcile large N-arguments with an effective quark model description led to the pos-
tulate of a so-called quarkyonic phase [1] and, secondly, effectice quark models could justify the
existence of “chiral spirals” or “Fermi-Einstein condensation” [2, 3].

By contrast, first principle lattice gauge simulations have shed light on the QCD confinement
mechanism for a vanishing chemical potential. It started with the discovery of a linear-rising po-
tential between static quark sources induced by a colour-electric flux tube forming between the
sources [4]. It remained to clarify why QCD electric flux tends to squeeze into tubes as opposed to
the case of flux spreading out in QED. A possible explanation was offerred twenty years ago by Del
Debbio, Faber, Greensite and Olejnik: after gauge fixing, the projection of the SU(N) gauge field
configurations to those taking values in the centre ZN of the group produces a theory that retains
colour confinement [5, 6, 7]. Further significance was added by the discovery that the ZN gauge
invariant degrees of freedom, the so-called centre-vortices, have properties dictated by the physical
mass scale and survive in the continuum limit [8]. A decade long fruitful discussion followed which
revealed the vortex signature in the high temperature deconfinement transition [9, 10] or for chiral
symmetry breaking [11, 12], and investigations of the vortex confinement mechanism extended to
gauge groups without a centre [13]. However, very little is know about the centre vortex properties
for light quark masses, let alone for finite density QCD.

Rather than adding to the extensive literature of effective descriptions of the QCD phase dia-
gram, I here would like to rise the question: Can we deform QCD to a theory that still has linear
colour confinement and, at the same time, admits a first principle calculation of its phase diagram?

I will show that Z3 gauge theory with bosonic matter in four dimensions is an answer. At finite
chemical potentials for the Z3 matter, direct Monte-Carlo simulations are ruled out by a strong sign-
problem. The recent years have seen remarkable advances for simulating those theories: Complex-
ification of fields [14] gave rise to Complex Langevin simulations [15, 16] or Lefschetz Thimble
inspired methods [17]. Algorithmic advances [18] may generically give reliable results for medium
size systems (e.g. [19, 20]). A powerful method for solving sign problems is dualisation [21, 22]:
a transformation of field variables on the dual lattice may or may not produce a real theory upon
the integration of the original variables. This frequently leads to non-local degrees of freedom
sometimes called “worms” or flux-lines [23].

2. Brane theory from Z3 gauge theory with Z3 matter

2.1 The model

Let us consider a 4-dimensional hyper-cubic lattice of extent N3×Nt and periodic boundary
conditions. The protagonists of the lattice simulation are Z3 group elements associated with the
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links of the lattice (“Gluon” fields) and with the sites (“matter” field):

Uµ(x), σ(x) ∈ {1,z,z†} , z = exp
{

i
2π

3

}
. (2.1)

The partition function Z of the theory features both, a pure gluonic action and an interaction term:

Z = ∑
σ ,Uµ

exp
{

Sg[U ] + S f [σ ,U ]
}
, (2.2)

Sg[U ] = 2β ∑
p

RePp , Pp=(x,µ<ν) = Uµ(x)Uν(x+µ)U†
µ(x+ν)U†

ν (x) , (2.3)

S f [σ ,U ] = 2κ ∑
x,µ=1...3

Re
[
σ

†(x)Uµ(x)σ(x+µ)
]

(2.4)

+ 2κ ∑
x,µ=4

[
eµ

σ
†(x)Uµ(x)σ(x+µ) + e−µ

σ
†(x)U†

µ(x−µ)σ(x−µ)
]
,

where p specifies an elementary plaquette of the lattice.

2.2 Dualisation

We are now going to sum over the fields Uµ ,σ ∈ Z3. I will only outline the calculation dis-
regarding the matter fields by setting κ = 0. Further details will be presented in a forthcoming
publication. The Z3 algebra greatly facilitates this calculation:

U ∈ Z3 : U3 = 1 , UU† = 1 , ∑
U∈Z3

U = 0 . (2.5)

Because of these properties, we find for any bivariate function f , which admits a Taylor expansion
in both of its arguments:

f (U,U†) = a + bU + cU† ,

where a,b,c are numerical constants. In particular, the “gluonic” Gibbs factor can hence be written
as:

exp{Sg} = ∏
p

exp
[
β (Pp +P†

p)
]
= ∏

p
c(β )

[
1+ t(β )(Pp +P†

p)
]
. (2.6)

c(β ) =
1
3

e2β +
2
3

e−β , t(β ) =
e2β − e−β

e2β + 2e−β
. (2.7)

Note that, for the interesting regime β > 0, t(β ) is positive.

The next step is to expand the brackets in (2.6) of the product. For this purpose, we introduce
auxiliary variables np (one for each plaquette p), which later become the degrees of freedom that
span the membrane:

1 + t Pp + t P†
p = ∑

np=−1,0,1

[
δnp,01 + δnp,1 t Pp + δnp,−1 t P†

p

]
= ∑

np=−1,0,1
t |np|Pnp .

The gluonic Gibbs factor (2.6) is then given by (with V = N3×Nt the lattice size):

exp{Sg} = c(β )6V
∑
{np}

∏
p

t(β )|np|Pnp . (2.8)
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Figure 1: The emerging functions t f and Ω for a selected range of the hopping parameter κ and the fugacity
exp µ .

We have now a plaquette field np at our finger tips: a np-configuration has a value 0,1 or −1 for
each plaquette. If we find np = 0 for a given plaquette p, we say it is “trivial”, i.e., it does not
contribute to the factor in (2.8). We are now in the position to sum over all link fields and to rewrite
the partition function in terms of the new plaquette field (recall κ = 0):

Zg = c(β )6V
∑
{np}

∑
{Uµ}

∏
p

t(β )|np|Pnp .

Depending on the plaquette configuration, Pnp is a product of many link fields. Due to the property
(2.5), many of this products vanish upon summation over the Z3 elements, e.g., if a particular link
U` of a non-trivial plaquette p stands alone. Another example is if two neighbouring non-trivial
plaquettes contribute each a factor U`, we would find: ∑U2

` = 0. A way to avoid producing a
vanishing contribution to the partition function is the following: the non-trivial plaquettes only
contribute links U` and U†

` at the same time and we would find ∑U`U
†
` = 3. We now see that

the summation over the Z3 elements introduces constraints to set of plaquette values {np}, and we
introduce

∑
{Uµ}

∏
p

Pnp =: 34V
δclosed({np}) , (2.9)

where δclosed({np}) = 1 if the contraints are satisfied and vanishes in all other cases. I will now
argue that if the np of a configuration {np} form a set of closed oriented surfaces, the constraint
is satisfied. To this aim, let c denote an elementary cube of the lattice, and let p ∈ c denote all
plaquettes forming the surface of the cube (the plaquette contribute a Pp pr P†

p depending on the
position on the surface). The Z3 Bianchi identity then yields:

∏
p∈c

Pp[U`∈p] = 1 .

Note that if a set of cubes has a plaquette p in common, we can set np = 0 since the plaquettes
come in pairs P and P†. Hence, if the set of np form arbitrary but closed surfaces, we would find
δclosed({np}) = 1. Altogether, we find:

Zg = c(β )6V 34V
∑
{np}

∏
p

t(β )|np| δclosed({np}) = c(β )6V 34V
∑

{np},closed
∏

p
t(β )|np| (2.10)
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Figure 2: Left: Allowed flux lines configurations: ”mesonic” type (left) and “baryonic” type (right). Right:
Average plaquette and the fraction of the 2-brane surface area as a function of β .

Defining the area A of the closed surfaces and the “surface tension” τ by,

A[{np}] = ∑
p
|np| , τ :=− ln t(β ) ,

The gluonic partion function can be viewed as a theory of closed membranes with a Nambu-Goto
action:

Zg = c(β )6V 34V
∑

{np},closed
exp
[
−τ A[{np}]

]
. (2.11)

We now need to include the matter fields. The derivation follows the lines above and starts
with a character expansion of the Gibbs factor. It starts noting that (for a given link ` = (xµ))
K` = σ†(x)Uµ(x)σ(x) is an element of the group Z3, and thus

exp{S f } = ∏
`

c f (κ,µ)

{
1 + t f (κ,µ)

[
Ω(κ,µ)K` +

1
Ω(κ,µ)

K†
`

]}
, (2.12)

where a c f , t f and Ω can be readily calculated. The result is lengthy and will be presented else-
where. I just point out that for µ = 0, the action S f (2.4) is real, and we have Ω(κ,0) = 1. For the
emerging string-like theory, it will be important that t f and Ω are positive. A phenomenological
relevant range is κ = 0.1 . . .1 and exp µ = 0.1 . . .2. The colour plot in figure 1 shows that both, t f

and Ω, are indeed positive within safe margins.

To expand the brackets in (2.12), we introduce for each link ` a flux variable k` by

1 + Ω(κ,µ)K` +
1

Ω(κ,µ)
K†
` = ∑

k`=−1,0,1

[
δk`,01 + δk`,1 t f ΩK` + δk`,−1

t f

Ω
K`

]
.
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Figure 3: Left: Difference of time-like and space-like plaquettes on a N3×Nt asymmetric lattice as a
function of β . Right: The difference for β = 0.427 as a function of the temperature Ta = 1/Nt .

This turns (2.12) into:

exp{S f } = c4V
f ∑
{k`}

∏
`

t |k`|f

[
ΩK`

]k`
. (2.13)

The final step is to “integrate out” the gauge fields Uµ and the matter fields σ . Inserting (2.8)
and (2.12) into the partition function (2.2), the summation over the original fields produces an
equivalent formulation of the partition function in terms of the plaquette variables np and the flux
variables k`:

Z(β ,κ,µ) = 37V c(β )6V c f (κ,µ)
4V

∑
{np,k`},closed

tA(np) tL(k`)
f Ω

t+(k`)−t−(k`) , (2.14)

where the constraints on the sets for np and k` are as follows:

• The set of oriented flux variables k` form closed lines that either form a loop or start (and
end) in points of multiple of 3 (see figure 2 for an illustration).

• The set of oriented plaquette variables np form either closed surfaces or open surfaces that
are bounded by flux loops.

Furthermore, A(np) is the total “gluonic” surface area, i.e., the number of non-trivial plaquettes
∑p |np|. The total length of the flux lines is denoted L(k`), and t+(k`) is the number of flux in
positive time direction and t−(k`) the sum of those timelike fluxes that are oriented in negative time
direction.

3. Brane theory - pure Z3 gauge theory

In order to carry out a simulation of the brane theory (2.11), we need to create configurations
with closed surfaces. I am using a standard Metropolis update that visits elementary cubes on the

5
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lattice and deforms the existing configuration of closed surfaces by adding and removing plaquettes
of the surface according to the orientation of the cube’s plaquette. This guarantees the MC update
does not violate the constraints. The underlying assumption is that this MC update is ergodic,
i.e., that it can generate all sets np compatible with δclosed 6= 0 in (2.9). At the current stage, the
numerical approach generating the specific sets of configuration should be viewed as definition of
the model until a rigorous link between the MC approach and the Z3 theory is established.

As a first observable, I study the average plaquette

1
2

1
6V

∂ lnZg

∂β
=

1
2

∂ lnc(β )
∂β

+
1
2

∂ ln t(β )
∂β

〈
|np|
〉
, (3.1)

where I have used (2.10). The fraction 〈|np|〉 of non-trivial surfaces on the lattice and the average
plaquette are related by numerical constants. Both quantities are shown in Figure 2, right panel. In
the strong coupling regime at small β , the 2-brane surfaces are suppressed and the β -dependence
of the plaquette is dictated by the first term in (3.1). The transition from the strong coupling regime
to saturation at high β (sometimes called “roughening transition”) is seen in the brane theory as the
onset when the brane surfaces start populating the empty vacuum.

Temperature, say T , in quantum field theory is usually introduced by the extent of the torus in
time direction:

1
T

= Nt a a : lattice spacing.

Renormalisation on the lattice is usually performed by demanding that a physical mass m does not
change under a change of the lattice regulator a. Measuring the scaling function s(β ) then defines
the lattice spacing as a function of the bare coupling parameter β :

ma = s(β ) ⇒ a(β ) =
s(β )

m
,

where m plays the role of the free parameter (rather than the coupling strength) and serves as a
reference scale. A correlation length (i.e., the inverse mass gap) is most easily detected on asym-
metric lattices using an observables that detects lattice asymmetries. A possibility is the difference
between time-like and space-like plaquette averages, i.e., 〈Pt−Ps〉, which informs the entropy den-
sity in Yang-Millls theories. As soon as the correlation length is large enough to equal the (smaller)
time-like extent Nta of the lattice, 〈Pt−Ps〉 will be significantly different from zero. Figure 3 shows
the difference as a function of β for several sizes Nt . The data show a clear peak around β ≈ 0.43,
which is more pronounced for a small temporal extent. The right panel of the same graph shows
the difference for several temperatures at a fixed value of β . If the theory possesses a mass gap m,
thermal excitations of the lightest excitation would imply:

〈Pt −Ps〉 ∝ exp
{
−m

T

}
= exp

{
−ma

Ta

}
.

Indeed, the data are very well fitted by this ansatz (see red line if figure 3). Repeating this analysis
for several values for β determines the lattice spacing in terms of the mass gap m:

β 0.413 0.420 0.427 0.434
ma(β ) 2.503(1) 2.163(5) 1.463(1) 1.346(1)

6
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Figure 4: Left: Matter density as a function of the chemical potential for β = 0.43 and κ = 0.130 and a
204 lattice. Right: Same as left but for several values of κ .

We see a UV type scaling: the lattice spacing a shrinks with increasing β . It is expected that
the Z3 gauge theory possesses a first order phase transition: the correlation length stays finite, and
a continuum limit a→ 0 does not exist. However, the model could be weakly renormalisable:
the infrared physics of the theory is largely insensitive to the regulator for a > acritical. A famous
example of such a weakly renormalisable theory is QED. Another quite recent example is from
Philipsen and collaborators: they have started to study lattice QCD for rather coarse lattices using
the strong coupling expansion and manage to extract rather robust infrared results (see e.g. [24]).

4. Branes, matter loops and finite densities

We now consider the full Z3 gauge theory with dynamical matter at the presence of a finite
chemical potential µ . As explained above, the dual theory is a theory of closed and open branes
bounded by matter loops. The surface tension is informed by t(β ) and the string tension of the
matter loops by t f (κ,µ) and Ω(κ,µ). The “normalisation” constants c and cF also depend on the
theory parameters:

Note that the matter density

ρ(µ) =
d lnZ

dµ

receives several contributions from the string theory variables:

ρ(µ) = N`
d lnc f

dµ
+

d ln t f

dµ

〈
L(k`)

〉
+

d lnΩ

dµ

〈
t+(k`)− t−(k`)

〉
. (4.1)

7



P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
2
0
1
8
)
0
4
9

Z3 gauge theory with matter at finite densities Kurt Langfeld

-3 -2 -1 0 1 2 3

µ

0

50000

100000

150000

200000

250000

300000

c
lu

s
te

r 
s
iz

e
 o

f 
m

a
tt

e
r

0.130

0.135

0.140

0.145

0.150

0.155

0.160

0.165

0.170

0.175

0.180

-3 -2 -1 0 1 2 3

µ

0

250

500

750

1000

1250

1500

n
u

m
b

e
r 

o
f 

 c
lu

s
te

rs

0.130

0.135

0.140

0.145

0.150

0.155

0.160

0.165

0.170

0.175

0.180

Figure 5: Left: Average size of matter clusters as a function of the chemical potential. Right: average
number of clusters populating the lattice.

It is expected that for a chemical potential smaller than the matter mass gap, µ < m f , the density
remains zero in the infinite volume limit (“Silverblaze” feature). We stress that this is highly non-
trivial in the string theory formulation and involves intricate cancellations in (4.1). At medium size
chemical potentials, the term on the far right of (4.1) strongly contributes to the density. Note that
closed matter loops, i.e., the “mesonic” loops, have t+(k`)− t−(k`) and that only the “baryonic”
loop configuration (see figure 2, left panel) do contribute.

We have simulated the full (brane) theory using a simple Metropolis update. The elementary
move for updating the closed “gluon” surfaces is “adding an elementary cube with oriented sur-
faces”. Two elementary moves are necessary to update the open surfaces bound by matter loops: A
“mesonic” update adds the oriented loop around an elementary plaquette and the plaquette to the
gluon surfaces; A “baryonic” update adding three matter lines part of a 1× 2 rectangular surface.
Changing the orientation of the surface or the flux then generates the “inverse” move needed for
detailed balance. Details will be presented in a forthcoming publication.

Figure 4 shows our numerical findings for the density ρ(µ) as a function of the chemical
potential µ for the case of rather large matter mass dictated by a hopping parameter κ = 0.130.
We indeed observe the “silver blaze” feature: the density almost vanishes up to a certain threshold
value µc when it rapidly increases. The small variations of the density for µ < µc might be well
explained by the finite lattice size. This interpretation is affirmed by reducing the matter mass,
i.e., increasing κ and observing that µc decreases (see figure 4, right panel). For large enough
κ >∼ 0.165, we observe a immediate response of the density to the presence of a chemical potential.
We might interpret this value of κ as the massless case.

Let us explore further the properties of matter as a function of µ and several masses informed
by κ . Figure 5, left panel, shows the average number of links that are connected to the other links
of one cluster. Let us focus on µ = 0: For large matter masses (e.g., κ = 0.130), we observe that

8
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only few and small clusters are present. For κ = 0.165, which we defined as the massless limit
above, we observe that the vacuum is populated by rather large clusters. Increasing κ further, we
observe a proliferation of matter loops and, perhaps, a less intersting phase for phenomenological
purposes.

If we now focus on the µ-dependence, we observe for large matter masses (e.g., κ = 0.130)
that, at the onset chemical potential, a proliferation of large clusters sets in. At the same time, the
average number of clusters sharply drops (see figure 5, right panel). These findings are compatible
with the deconfinement mechanism put forward by Helmut Satz in the nineties [25]: at a critical
baryon density, baryons start to overlap and the quarks can free percolate.

Note that there is also an important lesson to learn for QCD models: in the subcritical region
µ < µc in the “silverblaze region”, the properties of the (brane and loop) fields do significantly
depend on the chemical potential. These properties then conspire and produce a cancellation of a
µ-dependence in physical observables such as the density. This implies that effective models of
QCD (such as constituent quark models) need not necessarily be independent from the chemical
potential in the silverblaze regime.

Acknowledgements: I thank David Schaich and Radu Tatar for helpful comments, and, of
course, the organisers for an excellent conference. The numerical simulations were carried out at
the HPC facility Barkla at the University of Liverpool. Support is greatly acknowledged.
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