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We investigate the renormalization of a class of gauge-invariant nonlocal quark bilinear op-
erators, including a finite-length Wilson-line (called Wilson-line operators). The matrix elements
of these operators are involved in the recent “quasi-distribution” approach for computing light-
cone distributions of Hadronic Physics on the lattice. We consider two classes of Wilson-line
operators: straight-line and staple-shaped operators, which are related to the parton distribution
functions (PDFs) and transverse momentum-dependent distributions (TMDs), respectively. We
present our one-loop results for the conversion factors of straight-line operators between the RI′

(appropriate for nonperturbative renormalization on the lattice) and MS (typically used in phe-
nomenology) renormalization schemes in the presence of nonzero quark masses.

In addition, we present the first results of our preliminary work for the renormalization
of staple-shaped operators both in continuum (Dimensional Regularization) and lattice (Wil-
son/clover fermions and Symanzik improved gluons) regularizations. We identify the observed
mixing pairs among these operators, which must be disentangled in the nonperturbative investi-
gations of heavy-quark quasi-PDFs and of light-quark quasi-TMDs.
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Perturbative investigation of Wilson-line operators Gregoris Spanoudes

1. Introduction - Outline

A direction of research which has seen rapid progress in recent years regards the nonpertur-
bative study of light-cone partonic distribution functions on the lattice. These functions provide
important information on the quark and gluon structure of hadrons; at leading twist, they give the
probability of finding a specific parton (quark, antiquark, or gluon) in the hadron carrying certain
momentum and spin, in the infinite momentum frame. The direct computation of parton distribu-
tions on the lattice has been made feasible only recently by X. Ji’s approach [1]. The application
of this method is currently under investigation by many research groups and so far the outcomes
are very promising for the correct estimate of a physical light-cone distribution function. In this
approach, nonlocal fermion bilinear operators, which contain a finite-length Wilson line (called
Wilson-line operators), are involved. The investigation of the perturbative renormalization of these
operators is the goal of our study.

The outline of this paper is as follows. In Sec. 2 we provide a brief introduction to the Wilson-
line operators and their relation to the parton distribution functions, as well as a short description
of the quasi-distribution approach in Hadronic Physics and its application on the lattice. Sec. 3
contains the calculation setup and the results of our one-loop studies on the renormalization of
two types of Wilson-line operators: the straight-line and the staple-shaped operators, which are
relevant to the studies of parton distribution functions (PDFs) and transverse momentum-dependent
distributions (TMDs) respectively. Finally in Sec. 4, we conclude with possible follow-up work.

2. Wilson-line operators and PDFs

A Wilson line WC(xi,x f ) is a phase factor given by the path-ordered exponential of a gauge
field Aµ(x), along a line C with end-points xi and x f :

WC(xi,x f ) = P
{

exp
[
ig
∫

C
dxµAµ(x)

]}
(2.1)

This object has two important features: it is nonlocal and gauge-covariant. Quantities with these
traits are very promising for the investigation of nonperturbative phenomena, such as quark con-
finement. The history of studies of operators involving Wilson lines in gauge theories goes back
a long time, including seminal work of Mandelstam, Polyakov, Nambu, Gervais - Neveu, Ma-
keenko - Migdal, Witten, and many others. Some prominent work considers the renormalization
of closed Wilson-loop operators [2]: 〈tr(P{exp[ig

∮
C dxµAµ(x)]})〉, which are related to the ele-

mentary excitations of a gauge field. In these studies, it was shown that, in regularizations other
than dimensional regularization (DR), linear divergences arise even in smooth (i.e., differentiable)
and simple (i.e., non-self-intersecting) contours. These divergences can be eliminated to all orders
in perturbation theory, by an exponential renormalization factor that depends on the length L of
the contour and the ultraviolet cut-off scale a: Z ∼ exp(−c L/a), where c is a dimensionless quan-
tity. Also, contours containing singular points [3], such as cusps and self-intersections (Fig. 1),
introduce additional multiplicative renormalization factors.

Another work, relevant to our study, is the renormalization of Wilson-line bilocal fermion
operators [4]: ψ̄(x)WC(x,y)ψ(y), which are associated with the construction of gauge-invariant
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cusp self-intersection

Figure 1: Contours with singular points: cusps and self-intersections

hadronic bound states. In these calculations, additional divergences, compared to those of the
Wilson loops, arise from the end points of the open Wilson line. The insertion of a Dirac matrix in
the definition of the Wilson-line bilocal fermion operators, leads to the construction of a composite
operator OΓ(x), involved in the definition of quark PDFs:

q
Γ
(x) =

∫
∞

−∞

dξ−

4π
exp(−ixP+

ξ
−)
〈

N
∣∣∣Oξ−

Γ
(x)
∣∣∣N〉, (2.2)

where

Oξ−

Γ
(x) = ψ(ξ−) Γ W (ξ−,0)ψ(0), W (ξ−,0) = P

{
exp
[
− ig

∫
ξ−

0
dη
−A+(η−)

]}
, (2.3)∣∣∣N〉 is a hadron state, xP+ is the fraction of the hadron momentum P+, carried by each con-

situent parton inside the hadron, and Γ = γ+,γ5γ+,γ+γ⊥ corresponds to the unpolarized, helicity
and transversity PDFs respectively. PDFs are an essential tool for the analysis of Deep Inelastic
Scattering (DIS) experiments, as they give the contribution of soft gluon radiation in the scattering.
Because of the highly nonlinear nature of the parton dynamics for small values of x, PDFs can be
evaluated only with nonperturbative methods. Lattice QCD is the only known nonperturbative the-
oretical framework, in which one can calculate PDFs from first principles. However, the involved
Wilson line in the definition of PDFs, is defined in the light cone ((η−)2

= 0) and thus PDFs cannot
be computed directly on a Euclidean lattice.

A few years ago, a pioneering method for the direct computation of PDFs on the lattice was
suggested by X. Ji [1]. This approach is summarized in three steps:

1. First, instead of computing light-cone correlation functions, one projects outside of the light
cone and considers equal-time correlation functions, which are called quasi-distribution func-
tions. For example, the definition of parton quasi-distribution functions (quasi-PDFs) is:

q̃
Γ
(x,µ,Pµ) =

∫
∞

−∞

dz
4π

e−ixPµ z
〈

N
∣∣∣ψ(z) Γ W (z,0)ψ(0)

∣∣∣N〉, (2.4)

where
W (z,0) = P

{
exp
[
− ig

∫ z

0
dζ Aµ(ζ )

]}
(2.5)

and Γ = γµ ,γ5γµ ,γµγ⊥. These functions are purely Euclidean and thus they are accessible on
the lattice. The Wilson line involved in quasi-PDFs is a straight line in a spatial direction µ .

2. The second step is the renormalization of quasi-distribution functions. Since these functions
are calculable on the lattice, one can renormalize them nonperturbatively in the lattice reg-
ularization, using a Regularization-Independed (RI′)-like scheme [5, 6]. The lattice version

of the straight Wilson line is given by W (z,0) =
( n∓1

∏
`=0

U±µ(`aµ̂)
)†

, n≡ z/a, where upper

(lower) signs correspond to n > 0 (n < 0).

2



P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
2
0
1
8
)
0
9
4

Perturbative investigation of Wilson-line operators Gregoris Spanoudes

3. The last step is the matching of the renormalized quasi distributions to the correspond-
ing physical distributions, using the Large Momentum Effective Field Theory (LaMET)
[7]. The matching can also be performed using an intermediate step of converting the RI′-
renormalized quasi distribution to the MS scheme and after that matching to the physical
light-cone distribution.

The quasi-distribution approach can also be applied on other light-cone distributions, in which
further composite Wilson-line operators are involved. For example, a staple-shaped Wilson-line
operator ψ(0) Γ WS(z,y)ψ(z) (see Fig. 2) is included in a quasi-distribution formulation of TMDs

(0, 0) (z, 0)

(0, y) (z, y)

µ̂1

µ̂2

Figure 2: Staple-shaped Wilson line WS(z,y) appearing in a quasi-distribution formulation of TMDs

[8, 9]. In addition, the same Wilson-line operators are also involved in the pseudo-distribution
approach [10], which is one of the alternative approaches for extracting light-cone distribution
functions on the lattice.

3. Perturbative renormalization of Wilson-line operators

An important issue, which needs to be addressed in order to obtain meaningful results from
lattice investigations, is the renormalization of quasi-distribution functions in a fully nonperturba-
tive manner. Given that the renormalization of a quasi-distribution function can be obtained by
the renormalization of the corresponding Wilson-line operator, we study the latter in the pertur-
bative level. Perturbative calculations can reveal possible operator mixing, which must be taken
into account in the nonperturbative renormalization prescriptions. In this case, the nonlocality of
Wilson-line operators combined with a chiral-symmetry breaking action lead to the appearance of
mixing. Also, nonperturbative evaluations of the renormalization factors cannot be obtained di-
rectly in the MS scheme, which is typically used in phenomenology, since the definition of MS is
perturbative in nature. Most naturally, one calculates them in a RI′-like scheme, and then intro-
duces the corresponding conversion factors between RI′ and MS schemes, which rely necessarily
on perturbation theory. In the present work, we investigate the renormalization of two types of
Wilson-line operators: the straight-line and staple-shaped operators.

3.1 Renormalization of straight-line operators in the presence of nonzero quark masses

The first part of our calculation is considering the renormalization of straight-line operators
in the presence of nonzero quark masses. A long write-up of our work, together with an extended
list of references, can be found in Ref. [11]. In this part, we consider a total of 16 straight-line
operators of different Dirac structures:

Oz
Γ
(x) = ψ(x)ΓP

{
exp
(

ig
∫ z

0
dζ Aµ(x+ζ µ̂)

)}
ψ(x+ zµ̂), (3.1)

3
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where Γ = 1, γ5, γµ , γν , γ5 γµ , γ5 γν ,
1
2 [γµ , γν ],

1
2 [γν , γρ ], (µ 6= ν 6= ρ 6= µ); µ and |z| are the di-

rection and the length of the straight line, respectively. The quark and antiquark fields may have
different flavors: ψ f and ψ f ′ , and thus different masses. Before moving on to the presentation
of our computation, let us summarize the existing knowledge on the renormalization of straight-
line operators from previous studies; thus, we will give a brief progress report in this direction of
research.

3.1.1 History of renormalization of straight-line operators

The one-loop renormalization of straight-line operators in continuum regularizations was stud-
ied many years ago. First calculations were performed in DR and the MS scheme, giving the
following renormalization factor [4]:

ZDR,MS
Γ

= 1+
g2CF

16π2
3
ε
+O(g4) (3.2)

where CF = (N2
c − 1)/(2Nc) and Nc is the number of colors. According to the studies of Wilson

loop operators [2], in regularizations other than DR, the inclusion of an additional renormalization
factor of the form: exp(−c |z|/a), (a : cut-off scale), is required in order to eliminate the linear
divergences which appear, to all orders in perturbation theory.

The first perturbative lattice calculation was made recently in Ref. [12], to one loop for mass-
less quarks, using the Wilson/clover fermion action and a variety of Symanzik-improved gluon
actions. It was shown that besides the presence of logarithmic and linear divergences, similar to
those expected from the continuum, finite mixing is also present among certain pairs of the original
operators under renormalization. This is deduced by comparing the lattice bare two-point ampu-
tated Green’s function to the corresponding MS-renormalized Green’s function:

〈ψ Oz
Γ

ψ̄〉LR
amp = 〈ψ Oz

Γ
ψ̄〉MS

amp−
g2CF

16π2 eiqµ z ·F + O(g4), (3.3)

F =
[
Γ

(
c1 + c2 β + c3

|z|
a
+ log

(
a2

µ̄
2)(4−β )

)
+
{

Γ,γµ

}(
c4 + c5 cSW

)]
(3.4)

where β = 1−α , α : gauge parameter, cSW : free parameter of clover action, µ̄ : MS-renormalization
scale, q: quark external momentum, ci: numerical constants and LR: Lattice Regularization.
In Eq. (3.4), along with Γ1 ≡ Γ, there appear additional Dirac structures in the lattice result,
Γ2 ≡ {Γ,γµ}/2, which must be subtracted in the renormalization process. There are four mixing
pairs in total: (Γ1,Γ2) = (1,γ1), (γ5γ2,γ3γ4), (γ5γ3,γ4γ2), and (γ5γ4,γ2γ3), where by convention 1
is the direction of the straight Wilson line and 2, 3, and 4 are directions perpendicular to it.

The findings of the previous perturbative calculation on operator mixing were used in Refs.
[5, 6], for the construction of a complete nonperturbative renormalization program for the quasi-
PDFs. Introducing a RI′ scheme which respects the observed operator-mixing pairs (Γ1,Γ2), the
renormalization factors ZLR,RI′

(Γ1,Γ2)
for the operators (OΓ1 ,OΓ2) are 2×2 mixing matrices:(

OLR
Γ1

OLR
Γ2

)
= (ZLR,RI′

(Γ1,Γ2)
) ·

(
ORI′

Γ1

ORI′
Γ2

)
, (3.5)

4
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and, in order to estimate ZLR,RI′

(Γ1,Γ2)
nonperturbatively, one must obtain results from lattice simula-

tions for the matrix elements of both operators. In this program, there is no need to separate
the exponential renormalization factor for the elimination of the linear divergences, from the total
renormalization factor, i.e.,

ZLR,RI′

(Γ1,Γ2)
= Z̃LR,RI′

(Γ1,Γ2)
· e−c |z|/a−c̄|z|, (3.6)

as the RI′ condition ensures the elimination of both linear and logarithmic divergences. Here,
we note that for nonperturbative calculations, the exponential renormalization factor includes an
additional term which depends on a nonperturbative scale c̄. For the conversion of RI′-renormalized
operators to the MS scheme, one multiplies with the appropriate 2× 2 conversion factor CMS,RI′

(Γ1,Γ2)
,

computed in Ref. [12] to one loop:

ZLR,MS
(Γ1,Γ2)

= (CMS,RI′

(Γ1,Γ2)
)
−1
· (ZLR,RI′

(Γ1,Γ2)
) (3.7)

For the operators which do not exhibit any mixing, their renormalization factors are not matrices
and they satisfy the standard 1×1 version of Eqs. (3.5) - (3.7).

There are also other attempts for renormalizing the straight-line operators or directly the quasi-
PDFs nonperturbatively, using alternative techniques, such as the static quark potential, the gradient
flow and the auxiliary-field formalism (see references in [11]).

Some perturbative calculations for improving the nonperturbative renormalization programs
are currently under investigation. A preliminary work by M. Constantinou and H. Panagopoulos is
addressing the subtraction of lattice artifacts from nonperturbative results to one-loop level and to
all orders in the lattice spacing. Also, a work of ours, which is in progress, extents the calculation
of conversion factors between RI′ and MS schemes, to two loops. In addition, the inclusion of
nonzero quark masses and their significance on the renormalization of straight-line operators have
been studied by us and they are presented below. As we can conclude, the presence of quark masses
affects the observed operator mixing, for both continuum and lattice regularizations, as well as the
conversion factors. This study is useful for the nonperturbative investigation of heavy-quark quasi-
PDFs.

3.1.2 Calculation Setup

Taking into account the presence of nonzero fermion masses in our calculations, we adopt
mass-dependent prescriptions for the renormalization of straight-line operators. Also, in the pres-
ence of mixing within certain subsets (OΓ1 ,OΓ2 , . . .) of the original operators, their renormalization
factors will have a matrix form. We define the renormalization factors which relate the bare opera-
tors OΓi , quark fields ψ f and masses mB

f with the renormalized ones via the following equations:

OY
Γi
=
[
(ZX ,Y

(Γ1,Γ2,...)
)
−1]

i j
OΓ j , ψ

Y
f = (ZX ,Y

ψ f )
−1/2

ψ f , mY
f = (ZX ,Y

m f
)
−1

mB
f , (3.8)

where X(Y ) stands for the regularization (renormalization) scheme: X =DR,LR, . . ., Y =MS,RI′, . . ..
We note that for regularizations which break chiral symmetry (such as Wilson/clover fermions), an
additive mass renormalization is also needed, beyond one loop (mB =m0−mc, where m0(mc) is the
Lagrangian (additive/critical) mass). However, this is irrelevant for our one-loop calculations. For
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the calculation of ZX ,Y
(Γ1,Γ2,...)

, we need the evaluation of the corresponding bare two-point amputated

Green’s functions 〈ψ f OΓi ψ̄ f ′〉Xamp, which are related to the renormalized ones via:

〈ψY
f OY

Γi
ψ̄

Y
f ′〉amp

= (ZX ,Y
ψ f )

1/2
(ZX ,Y

ψ f ′
)

1/2 [
(ZX ,Y

(Γ1,Γ2,...)
)
−1]

i j
〈ψ f OΓ j ψ̄ f ′〉Xamp (3.9)

In the massive case, renormalization factors of the fermion and antifermion fields appearing in bi-
linear operators of different flavor content may differ among themselves, as the fields have generally
different masses. There are four one-loop Feynman diagrams corresponding to 〈ψ f OΓi ψ̄ f ′〉Xamp,
shown in Fig. 3. The last diagram (d4) does not depend on the quark masses, and therefore its

d1
m1m2

d2
m1m2

d3
m1m2

d4
m1m2

Figure 3: Feynman diagrams contributing to the one-loop calculation of the Green’s functions of Wilson-
line operator OΓ. The straight (wavy) lines represent fermions (gluons). The operator insertion is denoted
by double straight line.

contribution is the same as that of the massless case.
The calculation of Green’s functions of straight-line operators demonstrates that additional

contributions of different Dirac structures from that of the original operator are presented for each
operator:

〈ψ f OΓ1 ψ̄ f ′〉X, 1-loop
amp = g2

(
λ11〈ψ f OΓ1 ψ̄ f ′〉tree

amp +λ12〈ψ f OΓ2 ψ̄ f ′〉tree
amp + . . .

)
〈ψ f OΓ2 ψ̄ f ′〉X, 1-loop

amp = g2
(

λ21〈ψ f OΓ1 ψ̄ f ′〉tree
amp +λ22〈ψ f OΓ2 ψ̄ f ′〉tree

amp + . . .
)

...

where 〈ψ f OΓi ψ̄ f ′〉tree
amp = Γi exp(iqµz). These contributions are not divergent and thus, they are

irrelevant for the renormalization factors in DR and the MS scheme. However, some of these
contributions are regularization-dependent, which means that they must be removed in a RI′-like
scheme. Of course, this cannot be achieved by a simple multiplicative renormalization, but we
need to introduce mixing matrices for certain subsets of operators. The results of the present work
demonstrate that the presence of quark masses affects the observed operator-mixing pairs, due to
the chiral-symmetry breaking of mass terms in the fermion action. Compared to the massless case
on the lattice, the mixing pairs remain the same for operators with equal masses of external quark
fields, i.e., (1,γ1), (γ5γ2,γ3γ4), (γ5γ3,γ4γ2), and (γ5γ4,γ2γ3), where by convention 1 is the direction
of the straight Wilson line and 2, 3, and 4 are directions perpendicular to it. However, for operators
with different masses of external quark fields, flavor-symmetry breaking leads to four additional
mixing pairs: (γ5,γ5γ1), (γ2,γ1γ2), (γ3,γ1γ3), and (γ4,γ1γ4). Of course, the operator mixing depends
on the precise regularization-independent definition of the RI′ scheme.

There is, a priori, wide flexibility in defining RI′-like normalization conditions for Green’s
functions. Given that there is a residual rotational (or hypercubic, on the lattice) symmetry with
respect to the three transverse directions to the straight-line, including also reflections, no mixing

6
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needs to occur among operators which do not transform in the same way under this residual sym-
metry. Therefore, it is natural to adopt the minimal prescription of the following renormalization
condition which respects the observed operator mixing pairs, mentioned above:

tr
[(
〈ψRI′

f ORI′
Γi

ψ̄
RI′
f ′ 〉amp

)(
〈ψ f OΓ j ψ̄ f ′〉tree

amp

)†]∣∣∣∣∣
qν=q̄ν

=

tr
[(
〈ψ f OΓi ψ̄ f ′〉tree

amp

)(
〈ψ f OΓ j ψ̄ f ′〉tree

amp

)†]∣∣∣∣∣
qν=q̄ν

= 4Ncδi j, (3.10)

where i, j = 1,2 and q̄ν is the RI′-renormalized four-vector scale.
We also include the mass-dependent RI′ renormalization conditions for the quark fields and

masses, in textbook fashion:

tr
[
−

i/q
q2

(
〈ψRI′

f ψ̄
RI′
f 〉
)−1]∣∣∣∣∣

qν=q̄ν

= tr
[
−

i/q
q2

(
〈ψ f ψ̄ f 〉tree

)−1]∣∣∣∣∣
qν=q̄ν

= 4Nc (3.11)

tr
[
1

(
〈ψRI′

f ψ̄
RI′
f 〉
)−1]∣∣∣∣∣

qν=q̄ν

= 4Nc mRI′
f (3.12)

As a consequence of the operator-pair mixing, the conversion factors between RI′ and MS
schemes will be 2× 2 mixing matrices. Being regularization independent, they can be evaluated
more easily in DR. They are defined as:[

CMS,RI′

(Γ1,Γ2)

]
i j
=

2

∑
k=1

[
(ZDR,MS

(Γ1,Γ2)
)−1
]

ik
·
[
ZDR,RI′

(Γ1,Γ2)

]
k j
=

2

∑
k=1

[
(ZLR,MS

(Γ1,Γ2)
)−1
]

ik
·
[
ZLR,RI′

(Γ1,Γ2)

]
k j
, (3.13)

where ZDR,MS
(Γ1,Γ2)

is diagonal because there is no mixing in (DR,MS).

3.1.3 Calculation and Results

For the calculation of the momentum-loop integrals in the Green’s functions in DR, we fol-
low the standard procedure of introducing Feynman parameters. The presence of an exponential
function in the loop-integrals leads to a generalization of the standard formulas for the computation
of Feynman parameter integrals. The resulting formulas depend on modified Bessel functions of
second kind Kν(z):

I(α)≡
∫ dD p

(2π)D
eipµ z

(p2 +2 k · p+m2)α =
21−α−D/2 |z|α−D/2 e−ikµ z

πD/2 Γ(α) (m2− k2)α/2−D/4 K−α+D/2(
√

m2− k2 |z|),

(3.14)∫ dD p
(2π)D

eipµ z pν1 · · · pνn

(p2 +2 k · p+m2)α =
(−1)n

Γ(α−n)
2n Γ(α)

∂

∂kν1

· · · ∂

∂kνn

I(α−n) (3.15)

Our results for the bare Green’s functions in DR (see full expressions in Ref. [11]) demon-
strate that UV-divergent terms stem only from diagrams d2−d4. These terms are multiples of the
tree-level values of Green’s functions and therefore do not lead to any mixing. The finite terms of

7
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Green’s functions are complex functions and they exhibit a nontrivial dependence on the dimen-
sionless quantities: zqµ , zmi, (i = 1,2), besides the standard logarithmic dependence: log(µ̄2/q2).
Also, our results are not analytic functions of z near 0; this was expected due to the appearance of
contact terms beyond tree level.

Our results on the renormalization factors of straight-line operators in (DR, MS) are in agree-
ment with previous studies (see Eq. (3.2)). As we expected, they are independent of fermion
masses, Wilson-line length and gauge parameter. This independence is also valid to all loops, since
the most dominant pole at every loop cannot depend on the fermion masses or on the external mo-
menta or on the renormalization scale, thus there is no dimensionless z-dependent factor that could
appear in the pole part. Also, MS guarantees gauge invariance, since it removes only universal
divergences.

In contrast to the massless case, the renormalization factors in (DR, RI′) and thus the conver-
sion factors between RI′ and MS are nondiagonal matrices. However, in the case of equal quark
masses, the nondiagonal matrix elements of both renormalization and conversion factors vanish for
the pairs (γ5,γ5γµ), (γν ,γµγν), (ν 6= µ). Just to give an example, we present a matrix element of
one of the conversion factors:

[
CMS,RI′

S,Vµ

]
12
=

g2CF

16π2

{
−β z

(
m1 f21 +m2 f22

)
−β q̄2

µ

[
m1

(
g31− z f31

)
+m2

(
g32− z f32

)]
+ iβ q̄µ

[
m1(m2

1 + q̄2)g41 +m2(m2
2 + q̄2)g42− (q̄2− q̄2

µ)
(

m1g51 +m2g52

)]
+2
(

m1g11 +m2g12

)
+
(

m1 +m2

)[
(β +2)zh1− iβ q̄2 |z| q̄µh8

+ i |z| q̄µ

(
(β −2)h5 +2h6

)
+

1
2

iβ z2q̄µ

(
h2− q̄2h3

)
−β q̄2z |z|

(
h5−h6−h7

)]}
+O(g4),

(3.16)

where S(Vµ) denotes the Dirac matrix 1(γµ), and fi j, gi j, hi denote integrals of modified Bessel
functions, over Feynman parameters. To give a flavor of what these integrals look like, we provide
an example for each type:

f31 =
∫ 1

0
dx exp

(
−iq̄µxz

)
K0 (|z|s) (1− x)

x2

s2 , (3.17)

g31 =
∫ 1

0
dx
∫ z

0
dζ exp

(
−iq̄µxζ

)
K0 (|ζ |s) (1− x)

x2

s2 , (3.18)

h3 =
∫ 1

0
dx1

∫ 1−x1

0
dx2 exp

(
−iq̄µ(x1 + x2)z

)
K0 (|z| t) (1− x1− x2)

(x1 + x2)
2

t2 , (3.19)

where s ≡
[
q̄2 (1− x)x+m2

1x
]1/2

, and t ≡
[
q̄2 (1− x1− x2)(x1 + x2)+m2

1 x1 +m2
2 x2

]1/2
. These

integrals do not have a closed analytic form, but they are convergent and can be computed nu-
merically. The expressions for the remaining conversion factors’ matrix elements are written out

8



P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
2
0
1
8
)
0
9
4

Perturbative investigation of Wilson-line operators Gregoris Spanoudes

explicitly in Ref. [11], along with the definitions of the corresponding integrals over modified
Bessel functions.

In Fig. 4, we plot the real and imaginary parts of a representative diagonal and nondiagonal
conversion factor matrix element as a function of Wilson-line length z, for different cases of ex-
ternal quark masses. We select certain values of the free parameters used in ETMC simulations:
g2 = 3.077, β = 1, CF = 4

3 , µ̄ = 2 GeV, q̄ = 2π

32a(
nt
2 + 1

4 ,0,0,nz), a = 0.082 fm, nt = 8, nz = 4. We
note that the plots can be easily extended for negative values of z, since the real part of a diagonal
(nondiagonal) element is an even (odd) function of z, while the imaginary part is odd (even). We
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Figure 4: Real (left panels) and imaginary (right panels) parts of the conversion factor matrix elements (1,1)
and (1,2) for the operator pair (S, V1) as a function of z, for different values of quark masses.

observe that the real parts are an order of magnitude larger than the imaginary parts. Also, the
nondiagonal element is an order of magnitude smaller than the diagonal element. Furthermore, for
large values of z, the nondiagonal element, as well as the imaginary part of the diagonal element,
tend to stabilize, while the real part of the diagonal element tends to increase. Thus, a two-loop
calculation would be certainly welcome. Comparing the six cases of quark masses, we deduce that
the impact of mass becomes significant when we include a strange or a charm quark. Therefore,
we conclude that for external quarks lighter than strange, we may ignore the mass terms in the
calculations of quasi-PDFs, while for heavier quarks, the mass terms lead to perceptible changes.
More graphs can be found in Ref. [11].

3.2 Renormalization of staple-shaped operators

The second part of our calculation addresses the renormalization of staple-shaped operators
in both continuum (DR) and lattice (Wilson/clover fermions and Symanzik improved gluons) reg-
ularizations. The difference between these operators and the straight-line operators is the shape

9
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Perturbative investigation of Wilson-line operators Gregoris Spanoudes

of the involved Wilson line, which affects the UV divergences, as well as the operator-mixing
pairs. We will highlight some results of our preliminary work (together with M. Constantinou)
on the renormalization of these operators. Our findings can be a guidance to the nonperturbative
renormalization of quasi-TMDs.

3.2.1 Preliminary results

We define the staple-shaped operators as:

Oz, y
Γ

(x) = ψ̄(x) Γ W (x,x+ yµ̂2,x+ yµ̂2 + zµ̂1,x+ zµ̂1) ψ(x+ zµ̂1), (3.20)

where

W (x,x+ yµ̂2,x+ yµ̂2 + zµ̂1,x+ zµ̂1) =

P
{(

eig
∫ y

0 dζ̄ Aµ2 (x+ζ̄ µ̂2)
)
·
(

eig
∫ z

0 dζ Aµ1 (x+y+ζ µ̂1)
)
·
(

eig
∫ y

0 dζ̄ Aµ2 (x+z+ζ̄ µ̂2)
)†}

. (3.21)

The presence of cusps in the staple-shaped Wilson line (see Fig. 5) leads to additional divergences

π
2

π
2

Figure 5: A staple-shaped Wilson line has cusps of angle π/2.

in Green’s functions, compared to those of straight-line operators, which depend on the cusp angles
(π/2). Our result for the renormalization factors of operators in (DR, MS) is given by:

ZDR,MS
Γ

= 1+
g2CF

16π2
7
ε
+O(g4). (3.22)

The term g2CF
16π2

7
ε

comes from the sum of straight-line divergences (three straight-line segments):

3(g2CF
16π2

3
ε
) and cusp divergences (two cusps of angle π/2): 2(−g2CF

16π2
1
ε
), which agree with previous

studies of cusp divergences (e.g., [3]).
On the lattice, our results demonstrate that, as we expected, there is a linear divergence which

depends on the length of the staple line (|z|+ 2|y|). Also, comparing to the MS-renormalized
Green’s functions we found that operator-mixing pairs occur which are totally different from those
of the straight-line operators:

〈ψ Oz, y
Γ

ψ̄〉LR = 〈ψ Oz, y
Γ

ψ̄〉MS− g2CF

16π2 eiqµ1 z ·F + O(g4), (3.23)

F =
[
Γ

(
c1 + c2 β + c3

|z|+2 |y|
a

+ log
(
a2

µ̄
2)(8−β )

)
+ sgn(y)

[
Γ,γµ2

](
c4 + c5 cSW

)]
(3.24)

where c2 = 3.79201(1) and the remaining ci, are also numerical constants which depend on the
gluon action in use. In particular, the mixing pairs are: (γ5,γ5γ2), (γ1,γ1γ2), (γ3,γ3γ2), (γ4,γ4γ2),
where by convention: (µ1 = 1, µ2 = 2) specifies the plane on which the staple lies, and 3, 4 are
directions perpendicular to this plane. More details of our calculation and more results, including
the numerical values of ci, will be presented in a forthcoming publication [13].
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4. Follow-up work

There are many things to be done in the perturbative studies of Wilson-line operators. The
calculation of two-loop conversion factors, as well as the evaluation of lattice artifacts and their
subtraction from the nonperturbative estimates, are already in progress. A possible extension is the
addition of stout smearing of gluon links in the fermion action, and also in the definition of Wilson-
line operators. Finally, our perturbative analysis can also be applied to the study of further compos-
ite Wilson-line operators, relevant to different quasi-distribution functions, e.g., quasi-GPDs, gluon
quasi-PDFs, etc.

Acknowledgements: We would like to thank our collaborator M. Constantinou for useful discus-
sions. G.S. acknowledges financial support by the University of Cyprus, within the framework of
Ph.D. student scholarships.
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