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1. Introduction

Based on Ref. [1], we propose to revisit the method of relativistic sum rules to extract the
charm quark mass with emphasis on the evaluation of the uncertainty. Besides being a fundamental
input parameter defining the Standard Model (SM), mc enters many QCD and electroweak pro-
cesses. The most important future application will be the test of the mass versus Yukawa coupling
relation in the single Higgs SM, because at future lepton colliders it will be possible to measure
the charm Yukawa coupling very precisely. If one — within the SM — converts the projected
precision to a mass measurement this would correspond to an error of 8 MeV, which should be the
benchmark of what one wants to achieve at least regarding the precision in mc.

Among the most precise charm mass determinations, including lattice simulations [2–6] and
Deep-Inelastic Scattering data [7,8], relativistic QCD sum rules play an important role on establish-
ing the quark mass at the few-percent level [9–18]. The method, based on rigorous field theoretical
principles, can be systematically improved. Nevertheless, the resulting uncertainties are dominated
by theory errors which are notoriously difficult to estimate and often subject of vigorous debate.

We stress that the overall error may also be constrained within our approach to the QCD sum
rules. To this end, we will adopt a strategy where the only exploited experimental information
are the masses and electronic decay widths of the narrow resonances in the sub-continuum charm
region, J/Ψ(1S) and Ψ(2S).

Consistency between two different QCD sum rules will be seen to suffice to constrain the
continuum of charm pair production with good precision. For this procedure to work it is crucial
to include alongside the first or second moment sum rules also the zeroth moment, as the latter
exhibits enhanced sensitivity to the continuum. Comparison with existing data on the R-ratio for
hadronic relative to leptonic final states in e+e− annihilation will then serve as a control, providing
an independent error estimate which we interpret as the error on the method and (conservatively)
add it as an additional error contribution. In this way, we can show that the overall precision in m̂c

from relativistic sum rules is at the sub-percent level.

2. Defining the zeroth sum rule

Let us consider the transverse part of the correlator Πq(t) of two heavy-quark vector currents.
Πq(t) obeys the subtracted dispersion relation

12π
2(Πq(0)−Πq(−t)) = t

∫
∞

s0

ds
s

Rq(s)
s+ t

, (2.1)

where we have defined 12πIm[Πq(t + iε)] = Rq(t). By the optical theorem, Rq(s) can be related
to the measurable cross section for heavy-quark production in e+e− annihilation. The lower limit
of the integral s0 is fixed from the threshold for heavy quark production which is the unknown
quantity we want to determine. Ultimately is the function Rq(s) which will decide what exact value
to use for s0 since

Rq(s) =

{
RRes

q (s) if 0 < s0 < 4M2

RCont
q (s) if 4M2 ≤ s0 < ∞

(2.2)
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where RRes
q (s) contains a finite set of narrow resonances produced below the heavy-flavor produc-

tion threshold, and RCont
q (s) describes the continuum production above that threshold. As soon as

the resonance contribution RRes
q (s) is separated from Rq(s), s0 is identified with the open charm

threshold s0 = 4M2 with M = MD0 = 1864.84MeV.

Assuming now global quark-hadron duality, we can write [1]:∫
∞

s0

ds
s(s+ t)

Rq(s) =
∫

∞

s0

ds
s(s+ t)

RpQCD
q (s) (2.3)

where RpQCD
q (s) corresponds to the Rq(s) ratio calculated in perturbative QCD (pQCD) order by

order in the αs(s) expansion. Eq. (2.3) together with Eq. (2.1), implies:

Πq(0)−Πq(−t) = Π̂
pQCD
q (0)− Π̂

pQCD
q (−t) (2.4)

where Π̂
pQCD
q (t) is the correlator Πq(t) calculated in pQCD and the caret indicates the MS scheme.

Π̂
pQCD
q (t) obeys a subtracted dispersion relation, then, given by

∫
∞

4m̂2
q

ds
s

Rq(s)
s+ t

= 12π
2 Π̂

pQCD
q (0)− Π̂

pQCD
q (−t)

t
, (2.5)

where m̂q = m̂q(m̂q) is the mass of the heavy quark. Eq. (2.5) defines a set of sum rules that allow
us to define theoretical M th

n and experimental M exp
n moments [9–11]:

M exp
n =

∫
∞

s0

ds
Rq(s)
sn+1 =

12π2

n!
dn

dtn Π̂q(t)
∣∣∣∣
t=0

= M th
n . (2.6)

We can also define the zeroth moment M th,exp
0 [1, 19] by taking the limit limt→∞ in Eq. (2.5):

M exp
0 = lim

t→∞

∫
∞

4m̂2
q

ds
s

Rq(s)
s+ t

= 12π
2 lim

t→∞

Π̂
pQCD
q (0)− Π̂

pQCD
q (−t)

t
= M th

0 (2.7)

After taking the limt→∞ and multiplying by t, Eq. (2.7) as it stands is not well defined neither
for M exp

0 nor for M th
0 for which they must be regularized. At a given order in pQCD, the required

regularization can be obtained by subtracting the zero-mass limit of Rq(s), which we write as
3Q2

qλ
q
1 (s) with Qq the quark charge. λ

q
1 (s) is known up to O(α̂4

s ), but we will only need the
third-order expression [20],

λ
q
1 (s) = 1+

α̂s

π
+

α̂2
s

π2

[
365
24
−11ζ (3)+nq

(
2
3

ζ (3)− 11
12

)]
+

α̂3
s

π3

[
87029
288

− 121
8

ζ (2)− 1103
4

ζ (3)+
275
6

ζ (5) (2.8)

+ nq

(
−7847

216
+

11
6

ζ (2)+
262
9

ζ (3)− 25
9

ζ (5)
)
+n2

q

(
151
162
− ζ (2)

18
− 19

27
ζ (3)

)]
,

where α̂s = α̂s(s), nq = nl +1 and nl is the number of light flavors (taken as massless), i.e., quarks
with masses below the heavy quark under consideration.
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Let us then define the function H(t) to have exactly the same large t behavior as Π̂q(t) (includ-
ing leading divergence terms such as log(−t/µ2)) up to O(α̂3

s ). This is, explicitely, limt→∞(Π̂
pQCD
q (t)−

H(t)) = 0+O(α̂4
s ). H(t) satisfies a subtracted dispersion relation:

H(0)−H(−t) =
t
π

∫
∞

µ2

ds
s

Im[H(s)]
s+ t

(2.9)

where, Im[H(s+ iε)] =
3Q2

q
12π

λ
q
1 (s) and the lower limit as such that after integrating over Im[H(s+

iε)], the leading logarithms from the large t behavior of Π̂q(t), i.e., the log(−t/µ2)’s, are recovered.
Finally, we can cancel the divergences in Eq. (2.7) by subtracting Eq. (2.9) from it [1]:

12π
2 limt→∞

Π̂
pQCD
q (0)− Π̂

pQCD
q (−t)− (H(0)−H(−t))

t
(2.10)

= lim
t→∞

∫
∞

4m̂2

ds
s

Rq(s)−12π2Im[H(s)]
s+ t

−
∫ 4m̂2

µ2

ds
s

12π2Im[H(s)]
s+ t

.

Eq. (2.10) defines the regularized zeroth moment. As we have said, the optical theorem relates
Rq(s) in Eq. (2.2) with the cross section for heavy-quark production in e+e− annihilation. Below
the threshold for continuum heavy-flavor production, RRes

q (s) is approximated by δ -functions [9],

RRes
q (s) =

9π

α2
em(MR)

MRΓ
e
Rδ (s−M2

R). (2.11)

The masses MR and electronic widths Γe
R of the resonances [21] are listed in Table 1 and αem(MR)

is the running fine structure constant at the resonance1. To parametrize RCont
q (s), we assume that

continuum production can be described on average by the simple ansatz [1, 19],

RCont
q (s) = 3Q2

qλ
q
1 (s)

√
1−

4 m̂2
q(2M)

s′

[
1+λ

q
3

2 m̂2
q(2M)

s′

]
(2.12)

where s′ := s+ 4(m̂2
q(2M)−M2), and M is taken as the mass of the lightest pseudoscalar heavy

meson, i.e., M = MD0 = 1864.84 MeV for charm quarks [21]. λ
q
3 is a constant to be determined.

Eq. (2.12) interpolates smoothly between the threshold and the onset of open heavy-quark pair
production and coincides asymptotically with the prediction of pQCD for massless quarks [33].

Performing the limit limt→∞ in Eq. (2.10) will allow us to define the zeroth sum rule. Doing
so, we need the results of Refs. [23, 24] and Rq(s) = ∑

resonances
RRes

q (s)+Rcont
q (s). Multiplying then

by t/3Q2
q, and setting µ2 = m̂2, the zeroth sum rule reads [1]:

∑
resonances

9πΓe
R

3Q2
qMRα̂2

em(MR)
+

∞∫
4M2

ds
s

(
RCont

q (s)
3Q2

q
−λ

q
1 (s)

)
−

4M2∫
m̂2

q

ds
s

λ
q
1 (s) =

= −5
3
+

α̂s

π

[
4ζ (3)− 7

2

]
(2.13)

+

(
α̂s

π

)2[2429
48

ζ (3)− 25
3

ζ (5)− 2543
48

+nq

(
677
216
− 19

9
ζ (3)

)]
+

(
α̂s

π

)3

A3,

1The values for αem(MR) were determined with help of the program hadr5n12 [22].
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where α̂s = α̂s(m̂q). The third-order coefficient A3 is available in numerical form [25, 26],

A3 =−9.863+0.399nq−0.010n2
q . (2.14)

Notice that the continuum RCont
q (s) contributes with the lower integration limit 4M2, while the

subtraction term λ
q
1 (s) is integrated starting from m̂2

q.

To perform the integral
∞∫

4M2

ds
s

(
RCont

q
3Q2

q
−λ

q
1 (s)

)
in Eq. (2.13), it is convenient to expand first

λ
q
1 (s) in α̂s using the RGE for α̂s(s) selecting the reference scale as m̂2

q. In this way, the integral
over s becomes well defined, i.e., with all the divergences in both RCont

q (s) and λ
q
1 (s) removed.

Eq. (2.13) contains two unknowns, the quark mass m̂q(m̂q) and the parameter λ
q
3 entering in

our prescription for RCont
q (s). The zeroth sum rule is the most sensitive to the continuum region as

is the one with less powers of s, and shall be used to determine λ
q
3 . Self-consistency with another

moment sum rule can then be used to determine the quark mass as soon as λ c
3 is determined.

Theory predictions for the higher moments in perturbative QCD can be cast into the form

M pQCD
n =

9
4

Q2
q

(
1

2m̂q(m̂q)

)2n

Ĉn (2.15)

with

Ĉn =C(0)
n +

(
α̂s

π

)
C(1)

n +

(
α̂s

π

)2

C(2)
n +

(
α̂s

π

)3

C(3)
n +O(α̂4

s ) . (2.16)

The C(i)
n are known up to O(α̂3

s ) for n≤ 3 [27–30], and up to O(α̂2
s ) for the rest [31,32]. Since we

need all the moments up to O(α̂3
s ) we use the predictions for n > 3 provided in Ref. [33]. Once

M pQCD
n are available, the determination of both m̂q(m̂q) and λ

q
3 come from solving the system of

the two equations. In this last step, the theoretical moments are equated with their corresponding
experimental counterparts defined in Eq. (2.6), i.e., M pQCD

n = M exp
n for n > 0.

In general, vacuum expectation values of higher-dimensional operators in the operator product
expansion (OPE) contribute to the moments of the current correlator as well. These condensates
may be important for a high-precision determination of heavy-quark masses, in particular in the
case of the charm quark. The leading term involves the dimension-4 gluon condensate [9],

M cond
n =

12π2Q2
c

(4m̂2
c)

n+2 〈
α̂s

π
G2〉an

(
1+

α̂s(m̂2
c)

π
bn

)
. (2.17)

The coefficients an and bn can be found in [34,35]. In our fits we use the central value 〈 α̂s
π

G2〉exp =

0.005 GeV4 with an uncertainty of ∆〈 α̂s
π

G2〉= 0.005 GeV4, taken from the recent analysis [36].

R MR [GeV] Γe
R [keV]

J/Ψ(1S) 3.096916 5.55(14)

Ψ(2S) 3.686109 2.36(4)

Table 1: Resonance data [21] used in the analysis. The uncertainties from the resonance masses are negli-
gible for our purpose.
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Including the condensate contribution when equating Eqs. (2.6) and (2.15), i.e., M exp
n =

M pQCD
n together with the zeroth sum rule, we determine values for the heavy quark mass m̂c(m̂c)

and the constant λ c
3 . The other moments are then fixed and can be used to check the consistency of

our approach. No experimental data other than the resonance parameters in Table 1 are necessary.
From the combination 0th +2nd sum rules, we obtain λ c

3 = 1.23 and m̂c(m̂c) = 1.272GeV without
errors as they come from solving a system of two equations. The error estimation is discussed in
the next section. Once both m̂c(m̂c) and λ c

3 are determined, we can compare our prescription for
RCont

q (s) with experimental data in the threshold region, Fig. 1. The full red curve shows RCont
c (s)

with λ c
3 = 1.23 and m̂c(m̂c) = 1.272GeV and should be understood as an average determination of

the cross section in the threshold region.

2.0 2.5 3.0 3.5 4.0 4.5 5.0

2.0

2.5

3.0

3.5

4.0

4.5

5.0

s @GeVD

R
Hs

L

3.74 3.76 3.78 3.80 3.82

2.0

2.5

3.0

3.5

4.0

4.5

Figure 1: Data for the ratio R for e+e− → hadrons in the charm threshold region: Crystal Ball CB86
(green) [37]; BES00, 02, 06, 09 (black, blue, cyan, and red) [38–41], and CLEO09 (orange) [42]. The full
(red) curve shows RCont

c (s) with λ c
3 = 1.23 and m̂c(m̂c) = 1.272GeV. The inner plot is a zoom-in into the

energy range 2MD0 ≤
√

s≤ 3.83 GeV.

2.1 Uncertainty estimate

To determine an error for the continuum contributions we proceed in the following way [1]:
instead of using Eqs. (2.13, 2.15), we can compare experimental data shown in Fig. 1 with the
zeroth moment in the restricted energy range of the threshold region, 2MD0 ≤ √s ≤ 4.8 GeV to
obtain an experimental value for λ c

3 , denoted λ
c,exp
3 . Here we fix m̂c(m̂c) using Eq. (2.15) and

proceed to solve Eq. (2.13) by comparing with M exp
0 . Then we can also determine an error, ∆λ

c,exp
3

from the experimental uncertainty of the data in this threshold region.
We calculate the experimental moments via numerical integrals over the available experi-

mental data, cf. Fig. 1. Experimental data is classified in five different intervals, see Fig. 2,
which allow us to fully take into account correlated and uncorrelated uncertainties among different

5
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n Data λ c
3 = 1.34(17) λ c

3 = 1.23

0 0.6367(195) 0.6367(195) 0.6239

1 0.3500(102) 0.3509(111) 0.3436

2 0.1957(54) 0.1970(65) 0.1928

3 0.1111(29) 0.1127(38) 0.1102

4 0.0641(16) 0.0657(23) 0.0642

5 0.0375(9) 0.0389(14) 0.0380

Table 2: Contributions to the charm moments (×10n GeV2n) from the energy range 2MD0 ≤
√

s≤ 4.8 GeV.
For the results in the column labeled ’Data’, light-quark contributions have been subtracted using the pQCD
prediction at order O(α̂3

s ). These entries are obtained from the data displayed in Fig. 2, taking into account
the correlation of systematic errors within each experiment. The third column uses m̂c = 1.272GeV and
λ

c,exp
3 determined by the zeroth experimental moment (see text for details). The last column shows the

theoretical prediction for the moments using m̂c = 1.272GeV and λ c
3 = 1.23, not including condensates.

collaborations and intervals. The results for the experimental moments in the threshold region,
2MD0 ≤ √s ≤ 4.8 GeV are given in Table 2. For the results in the columns labeled ’Data’, light-
quark contributions have been subtracted using the pQCD prediction at order O(α̂3

s ), see Ref. [1].
Its second column shows the required value for λ

c,exp
3 such that the zeroth moment sum rule is ex-

perimentally satisfied after fixing m̂c(m̂c) = 1.272GeV. The rest of the moments in this column are
reported to show the consistency of the approach. Even for the highest moments, the consistency is
very good. The last column collects, for comparison, the value for the moments in the same energy
region using λ c

3 = 1.23 extracted from the theoretical determination.
The shift in the moments resulting from the different values for λ c

3 (either from two moments
combined with resonance data only, or from the comparison of the 0th moment with continuum
data in the threshold region) turns out to be small. Strictly speaking this shift is a one-sided error,
but to be conservative we include it as an additional double-sided error in the results of Table 3.
A graphical account of this shift is shown in Fig. 3 as a cyan band for the result of the 0th + 2nd

moments pair for m̂c(m̂c) = 1.272GeV. In this case, λ
c,exp
3 = 1.34(17), c.f. Table 3. The red solid

curve corresponds to the same pair of moments and the same quark mass with λ c
3 = 1.23, and well

overlaps with the cyan band.
Finally, we assign a truncation error to the theory prediction of the moments following the

method proposed in Ref. [19] which considers the largest group theoretical factor in the next un-
calculated perturbative order as a way to estimate errors,

∆M
(i)
n =±Q2

qNCCFCi−1
A

(
α̂s(m̂q)

π

)i( 1
2m̂q(m̂q)

)2n

(2.18)

(NC =CA = 3, CF = 4/3). At order O(α̂4
s ), this corresponds to an uncertainty of ±48(α̂s/π)4 for

Ĉ(4)
n in Eq. (2.15).

For the moments with n > 3 taken from Ref. [33] we have to include additional uncertainties
specific to the method used to obtain predictions for Mn. These errors are very small, but included

6
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2.0 2.5 3.0 3.5 4.0 4.5 5.0
2.0

2.5
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3.5
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RHsL
CB 86
BES00
BES02
BES06
BES09
CLEO09

I II III IV V

p
s [GeV]

Figure 2: Data for the ratio R for e+e− → hadrons in the charm threshold region: Crystal Ball CB86
(green) [37]; BES00, 02, 06, 09 (black, blue, cyan, and red) [38–41], and CLEO09 (orange) [42]. The gray
bands indicate the five intervals considered for evaluating the experimental moments.

for completeness.

The charm mass and the continuum parameter λ c
3 can, in principle, be determined from any

combination of two moments, not only 0th + 2nd . The zeroth moment, however, is expected to
provide the highest sensitivity. The results for combinations of the zeroth with one higher moment
are summarized in Table 3 and visualized in Fig. 5. We include the difference between the two
possibilities to determine λ c

3 as described above as an additional error.

As an example on how to understand Table 3, select the 0th + 2nd moments pair as the re-
sult for the quark mass, we would combine the total error ±8.0 MeV with ±4.2 MeV from
α̂s(Mz) = 0.1182(16) [21]. Then, m̂c(m̂c) = 1272(9) MeV. Doing so for each pair of moments
collected in the table, we notice that the combination 0th +2nd provides the smallest total error for
the heavy quark mass. Let us remark that for the highest moments, the truncation of the OPE series,
i.e., condensates of higher dimension not considered in our approach can be important [1]. While
difficult to assert, we belief that these higher dimension condensates are well included in our con-
densate error estimate. However, to be on the safe side, charm quark mass determination using the
4th and 5th moment sum rules may have an underestimated error. They should not be considered.
On the contrary, the 0th and 1st moments are the ones less sensitive to the OPE truncation with the
combination 0th + 1st being a most favorable choice. However, this combination is the one most
sensitive to the continuum region, with largest shift in λ

c,exp
3 , cf. Table 3, and for the same reason

most sensitive to ∆αs. The pair of the 0th and 2nd moments is our optimal choice since balance
well between reduced effects of the OPE series truncation and good description of the continuum

7
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Figure 3: Data for the ratio R for e+e− → hadrons in the charm threshold region: Crystal Ball CB86
(green) [37]; BES00, 02, 06, 09 (black, blue, cyan, and red) [38–41], and CLEO09 (orange) [42]. The full
(red) curve shows RCont

c (s) with λ c
3 = 1.19 and m̂c(m̂c) = 1.279GeV and the cyan band shows RCont

c (s) with
m̂c(m̂c) = 1.279GeV and λ

c,exp
3 = 1.35(17) .

region. This pair has also the smallest total uncertainty in the charm mass determination.

3. Conclusions

In this talk we presented a determination of the charm quark mass based on the work of
Ref. [1]. We revisit there the method of relativistic sum rules with emphasis on the evaluation
of the uncertainty. By invoking the zeroth sum rule and requiring self-consistency with higher-
moment sum rules, we can show that the overall error may be constrained within the approach.

After considering the combination of two different sum rules, the only experimental infor-
mation required are the masses and electronic decay widths of the narrow resonances in the sub-
continuum charm region, J/Ψ(1S) and Ψ(2S). Comparison with experimental data in this region
is later on used to check the results and determine an experimental error.
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∆m̂c(m̂c) (M0,M1) (M0,M2) (M0,M3) (M0,M4) (M0,M5)

m̂c(m̂c) 1280.9 1272.4 1269.1 1265.8 1262.2

λ c
3 1.154 1.230 1.262 1.291 1.323

λ
c,exp
3 1.35(17) 1.34(17) 1.34(17) 1.33(17) 1.32(17)

Resonances 5.8 4.5 3.9 3.3 2.8

Truncation 6.3 5.9 7.2 8.9 10.5

λ c
3 −λ

c,exp
3 +6.4 +1.5 +0.3 +0.1 +0.1

∆λ
c,exp
3 4.7 1.7 0.7 0.3 0.2

103×∆G −0.25∆G −0.37∆G −0.54∆G −0.73∆G −0.88∆G

(−1.3) (−1.9) (−2.7) (−3.7) (−4.4)

Total ±11.7 ±8.0 ±8.7 ±10.2 ±11.7

103×∆α̂s(Mz) +3.6∆α̂s +2.6∆α̂s +1.6∆α̂s +0.6∆α̂s −0.4∆α̂s

Electroweak fit (+5.8) (+4.2) (+2.6) (+1.0) (−0.6)

Lattice (+4.3) (+3.1) (+1.9) (+0.7) (−0.5)

Table 3: Values and breakdown of the uncertainties of m̂c(m̂c) (in MeV) and λ c
3 determined from different

pairs of moments. The line denoted ’Total’ gives the quadratic sum of the errors from λ c
3 , the resonances, the

gluon condensate and the pQCD truncation. Numerical values for the uncertainties from α̂s and CG = 〈 α̂s
π

G2〉
(in units of GeV4) are shown in separate lines. In the line labeled ’Electroweak fit’ we use ∆α̂s(Mz) =

0.0016 [21], in the last line denoted ’Lattice’, we use ∆α̂s(Mz) = 0.0012 [21]. See Figure 5 for a graphical
representation.
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