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Sphaleron rate in lattice gluodynamics
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QCD vacuum can be treated as a series of energetically equivalent, but topologically distinct sec-
tors. The rate of transitions between various topological sectors is determined by the sphaleron
rate ΓCS. This quantity is given by the limits of zero frequency and zero momentum of the cor-
relator of topological charge density. Sphaleron rate is very similar to such transport coefficients
as viscosity or conductivity. Sphaleron rate also describes time relaxation of the chiral charge. In
this report we discuss the measurement of sphaleron rate in lattice gluodynamics in the deconfine-
ment phase. We use Gradient Flow to measure the topological charge density correlator, and we
also take continuum limit. We provide an estimation of the sphaleron rate in lattice gluodynamics
and compare it with results obtained by other methods.
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1. Introduction

It is well known that Yang-Mills theory possesses infinite series of energetically degenerate
but topologically distinct vacua[1, 2], characterized by an integer, Chern-Simons number NCS.
Transitions between various sectors can occur due to the tunneling process, instanton[3]. At fi-
nite temperature thermal fluctuations of the gluonic field (exciting unstable field configurations -
sphalerons) also can change the Chern-Simons number and lead to the transition to another sector.
The evolution of the Chern-Simons number with time t is a random walk with a rate ΓCS given by
the sphaleron transitions:

ΓCS(t) = lim
t→0

〈∆N2
CS(t)〉
Vt

(1.1)

In a theory with fermions due to anomaly the change of Chern-Simons number is accompa-
nied by the change of a corresponding fermionic charge. For example, in electroweak theory the
sphaleron transitions explain baryon number nonconservation. In Quantum Chromodynamics, the
sphaleron transitions lead to the change of quark chirality.

Let us overview, what is known about the value of the sphaleron rate in QCD and QCD-like
theories. In the approximation of high temperature T and in the weak coupling regime ΓCS ∼
α5 log1/αT 4[4], where α is the coupling constant. Numerical simulations in the weak-coupling
regime and attempts to extrapolate the result to the temperatures close to the confinement - decon-
finement phase transition give[5]: ΓCS∼ 30α4T 4. It is also worth mentioning the results for N = 4
Super Yang-Mills, obtained by holographic methods: Γ= g2N

256π3 T 4[6]. Improved holographic QCD,
which corresponds to the gluodynamics in the limit of large number of colors, gives much larger
result[7]. For example, at the critical temperature Γ(Tc)/T 4

c > 1.64. In [8], the first attempt to mea-
sure the sphaleron rate in lattice SU(2) gluodynamics was performed, where the authors obtained
Γ/T 4 ∼ 10−3. It can be easily seen that the results within various approaches are rather controver-
sial. Nonperturbative evalution of the sphaleron rate in QCD nowadays is absent. For this reason in
this report we would like to study the sphaleron rate by means of lattice simulations, which is one
of the most powerful approaches for studying nonperturbative phenomena. Despite a considerable
progress in the lattice study of QCD and other theories, today it is not possible to calculate the
sphaleron rate in the theory with fermions. For this reason, in this report we consider the sphaleron
rate in gluodynamics, in the vicinity of the confinement-deconfinement phase transition.

2. Lattice setup

Since the change of the Chern-Simons number is given by the integral of the topological charge

q(x) = g2

32π2 Fa
µν F̃µν

a : ∆NCS(t) =
∫

d3x
t∫

0
q(x, t), the sphaleron rate ΓCS is the zero frequency limit of

the retarded Green function imGR(ω,~k = 0) of the topological charge density:

ΓCS =−2πT lim
ω→0

ρ(ω)

ω
,

ρ(ω) =
1
π

imGR(ω,~k = 0)
(2.1)

Here ρ(ω) is the spectral function of the correlator of the topological charge density. The
minus sign in front of (2.1) appears due to the pseudoscalar nature of the topological charge density
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operator. Since simulations on the lattice are performed in Euclidean space, one has to make an
analytical continuation. In Euclidean space the correlator is related to the spectral function via the
integral relation:

GE(t) =
∞∫

0

ρ(ω)
coshω(β/2− t)

sinhωβ/2
dω (2.2)

Lattice study of the sphaleron rate is analagous to the investigation of such transport coeffi-
cients as electric conductivity[9, 10], shear viscosity[11, 12, 13], bulk viscosity[14, 15] and others.
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Figure 1: Topological charge density correlator for the temperature T/Tc = 1.24, the lattice size 24× 703

and three values of the GF time τ/a2 = 1.0,1.5,2.0.

Numerical simulations were performed in gluodynamics with gauge group SU(3) and Wilson
gauge action. To measure the topological charge density and its correlator, the Gradient Flow
method[16] was applied. Using Gradient Flow one can measure renormalized correlator Cq(t) of
the topological charge density[17] using:

Cq(x) = lim
τ→0

lim
a→0
〈qτ

L(x)q
τ
L(0)〉, (2.3)

where qτ
L(x) is the discretized operator of the topological charge density measured at the Gradient

Flow time τ . Moreover the behaviour of the corrections at nonzero τ and a is also known[17]:

〈qτ
L(x)q

τ
L(0)〉=Cq(x)+Oτ(a2)+O(τ) (2.4)

Note that discretization errors Oτ(a2) in general depend on τ , so the order of limits in Eq. (2.3)
is important. One should take continuum limit first and then set τ → 0.
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3. Results

We present the results for three temperatures T/Tc = 1.24,1.50,1.70. For each temperature
to take the continuum extrapolation we performed measurements at four lattice sizes 12× 363,
16×483, 20×603, 24×703. To check finite volume effects, for T/Tc = 1.24 simulations at lattice
sizes 16× 323 and 16× 643 were also performed. The dependence of the lattice step on bare
parameter β was taken from[18].

An example of the topological charge density correlator is presented in Fig. 1. On this figure
the correlator for the temperature T/Tc = 1.24, the lattice size 24×703 and three values of the GF
time τ/a2 = 1.0,1.5,2.0 is shown. One sees that for the middle points the correlator is negative
as expected. For small values of Euclidean time t the correlator becomes positive due to the large
positive contact term which gets smeared at nonzero values of τ . For that reason one should omit
points with values of t smaller than the characteristic radius of smearing ∼

√
8τ . At τ . a2 the

discretization errors might be large. For this reason in the following we use data with t2/8 & τ & a2

for the extrapolation.
We have found that the a-dependence of the correlator for all values of GF time τ and Eu-

clidean time t within the restrictions discussed above can be described by a2 term. For example
in the Fig. 2 we present the correlators for τ/a2

24 = 4, t/a24 = 12 and τ/a2
24 = 1.5, t/a24 = 7 (the

data is for the temperature T/Tc = 1.24, a24 is the lattice step for the lattice size 24× 703) as a
function of 1/N2

t ∼ a2. For τ/a2
24 = 1.5 only three points are presented, because the lattice step a12

for the lattice 12×363 does not satisfy the restriction τ & a2. Also we have seen that the results for
16×323, 16×483 and 16×643 coincide within errorbars, thus finite volume effects are negligible.
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Figure 2: The dependence of the correlator −GE/T 5 on the 1/N2
t for τ/a2

24 = 1.5, t/a24 = 7 (left) and
τ/a2

24 = 4, t/a24 = 12 (right). Temperature is T/Tc = 1.24. Lines correspond to the quadratic fit GE =

GE(a = 0)+Ca2. Points for lattice sizes 16×323 and 16×643 are also shown.

Using the results of the extrapolation a→ 0, we can study the τ-dependence of the results
and perform extrapolation τ → 0. In Fig. 3 the τ-dependence of the continuum extrapolated cor-
relator for the temperature T/Tc = 1.24 is presented. One clearly sees that this dependence can
be described as linear, what allowed to perform an extrapolation τ → 0. Finally, we present the
extrapolated correlator of the topological charge density in Fig. 4.
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Figure 3: The dependence of the continuum extrapolated correlator on the GF time τ for four values of the
Euclidean time t/a24 = 6,8,10,12.

Now let us discuss the inversion of Eq. 2.2. Since gluodynamics is asymptotically free, at large
frequencies the behaviour of ρ(ω) should be described by the perturbation theory. Leading order
results for ρ(ω):

ρ
LO(ω) =− dAα2

s

256π4 ω
4, (3.1)

where dA = 8 is the number of gluons. Note that behaviour is ∼ ω4, but numerical coefficient
is very small. To estimate the contribution of this UV tail, we convoluted the spectral function
ρLO(ω)θ(ω−ω0) with the kernel (2.2). The threshold θ0 was taken to be 5T . This contribution is
also shown in Fig. 4. One clearly sees that for all points under considerations the contribution of
the ultraviolet part is at least by order of magnitude smaller, which makes the problem of inversion
of (2.2) for sphaleron rate not so difficult as, i.e., for the shear viscosity [12].

To invert the integral relation (2.2) we used Backus-Gilbert method[19, 20]. In this method
one obtains an estimator ρ̂ of the spectral function ρ according to: ρ̂(ω) = ∑

i
Giui(ω), where

Gi = GE(ti) is the data for the correlator and ui(ω) are some functions. If one takes the expres-

sion (2.2) for the points Gi = GE(ti), then ρ and ρ̂ are related via ρ̂(ω̄) =
∞∫
0

dωδ̂ (ω̄,ω)ρ(ω).
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Figure 4: Renormalized correlator of the topological charge density as a function of Euclidean time for
temperature T/Tc = 1.24(red points). Green line corresponds to the contribution of the ultraviolet part of the
spectral function.

δ̂ (ω̄,ω) = ∑
i

K(ω, ti)ui(ω̄) is called a resolution function. The functions ui(ω) are chosen in such

way that δ̂ (ω̄,ω) is close to delta function δ (ω̄ −ω), then ρ̂(ω) is a good estimation of ρ(ω).
The exact way of choosing these function is described, i.e., in [12]. It is important to note that
this method contains additional parameter - a regulator λ . By varying λ one can decrease the final
statistical error at the price of making the resolution function δ wider. By changing this parame-
ter we estimated systematical uncertainty of the final result. Statistical error is much smaller then
systematical.

1.1 1.2 1.3 1.4 1.5 1.6 1.7

T/Tc

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Γ
/T

4

30α4
s

BG

Figure 5: The dependence of the sphaleron rate on the temperature T/Tc. Green points correspond to our
results. Blue band represents the predictions of [5].

The resulting dependence of the reconstructed sphaleron rate Γ on the temperature of the
system is shown on Fig. 5. On the same plot we showed the predictions of [5]. To estimate the
coupling constant αs as a function of temperature we used two-level formula with the scale given
by µ ∼ (1−4)πT . It can be seen that our results are close to those of [5], although seem to favour
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larger values.
In conclusion, we measured the correlator of the topological charge density in gluodynamics in

the deconfinement phase using Gradient Flow. The results are extrapolated to the continuum. Using
the extrapolated correlator we estimated the sphaleron rate in gluodynamics and its temperature
dependence. The results are in agreement with the estimation of [5].
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