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We study the interactions among a static quark-antiquark pair in the presence of dense two-color
quark matter within lattice simulations. To this end we compute Polyakov line correlation func-
tions and determine the renormalized color-averaged, color-singlet and color-triplet grand poten-
tials. The color-singlet grand potential allows us to elucidate the number of quarks induced by a
static quark antiquark source, as well as the internal energy of such a pair in dense quark matter.
We furthermore determine the screening length, which in the confinement phase is synonymous
with the string breaking distance. The screening length is a decreasing function of baryon density,
due to the possibility to break the interquark string via a scalar diquark condensate at high density.
We also study the large distance properties of the color singlet grand potential in a dense medium
and find that it is well described by a simple Debye screening formula, parameterized by a Debye
mass and an effective coupling constant. The latter is of order of unity, thus even at large density
two-color quark matter is a strongly correlated system.
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1. Introduction

Knowledge of the properties of QCD at large baryon density is needed to interpret the results
of heavy ion collisions experiments. In particular, this is the case at the future experiments of
NICA (JINR, Dubna) and FAIR (Darmstadt, Germany), which are designed to study the region of
high baryon density. Input from the theory side is hence urgently needed. An understanding of
the properties of matter in the corresponding region of the QCD phase diagram is also extremely
important in astrophysics, for example, for a correct description of the fusion of neutron stars.

An interesting area of finite temperature lattice simulations is the study of the interaction be-
tween a quark-antiquark pair and the interaction of the pair with the QCD medium (see e.g. [1,
2, 3, 4]). The in-medium properties of QCD are prominently encoded in the correlation function
of Polyakov loops. The Polyakov loop correlator is directly related to the free energy of the in-
medium quark-antiquark pair. In the confinement phase the free energy extracted is known to be a
linear increasing function at intermediate distances. It is known that at zero temperature the QCD
string breaks at distances above 1.2 fm [5]. On the other hand in the deconfinement phase at large
distances the free energy also flattens off, the reason being a screening of the interactions between
the quark and antiquark due to liberated colored medium degrees of freedom. The question of
whether or how the screening properties of QCD may be captured by an analogous and equally
simple Debye screening formula in analogy with the Abelian theory is a ongoing field of research.
The properties of the correlation function of Polyakov loops in finite temperature QCD have been
thoroughly studied in lattice simulations [1, 2, 3, 4]. More recently the Polyakov loop correlator on
the lattice has been compared to effective field theory predictions, both in a perturbative setting in
pNRQCD and perturbatively matched EQCD [6], also in analytic studies [7, 8].

While it is an interesting proposition to carry out similar studies of the Polyakov loop at finite
baryon density in QCD, the usual methods of lattice QCD unfortunately break down because of
the so-called sign problem and so far only results for small values of the baryon chemical potential
were obtained [9]. Instead of pursuing the question of finite density physics in QCD directly, we
here turn to the study of theories, which are similar to QCD but are not plagued by the sign problem.
We believe that in particular the study of dense two-color QCD [10, 11] allows us to learn about the
properties of three-color QCD at non-zero chemical potential. Other candidate theories not further
pursued here are e.g. QCD at nonzero isospin chemical potential [12, 13]. We can not expect to
obtain quantitative predictions from such a strategy, while vital qualitative insight may be gained.

In this paper we continued our study of SU(2) QCD at finite density and low temperature
based on lattice simulations. Our simulations were performed on 324 lattices with rooted staggered
fermions at a relatively small lattice spacing a = 0.044 fm, which allowed us to study two-color
QCD at very large baryon densities (up to quark chemical potential µq > 2000 MeV) while avoiding
strong lattice artifacts. Technical details of the simulations may be found in [14].

2. The grand potential of a static quark-antiquark pair in dense quark matter

The grand potential Ωq̄q(r, µq) of a static quark-antiquark pair placed within a distance of r

1



P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
2
0
1
8
)
1
5
4

Study of deconfined quark matter at zero temperature and high density A. A. Nikolaev

into the dense medium can be represented in terms of the correlator of Polyakov loops

Ωq̄q(r,µq)

T
=− log〈T̃rL~xT̃rL†

~y〉+ c(µq), r = |~x−~y|, (2.1)

where T̃r = 1
2 Tr and the Polyakov loop is given as the trace of a product of gauge links in temporal

direction L~x =
Nτ−1
∏

τ=0
Uµ=0(~x,τ). The quantity c(µq) denotes a divergent renormalization constant,

which is related to the self-energy of a quark or antiquark source. In the limit r→∞, the correlation
between the Polyakov lines becomes negligible and the grand potential Ω∞(µq) is given by the
squared expectation value of the volume-averaged Polyakov loop, 〈L〉= 〈N−3

s ∑~x T̃rL~x〉:
Ω∞(µq)

T
=

1
T

lim
r→∞

Ωq̄q(r,µq) =− log |〈L〉|2 + c(µq). (2.2)

In pure gauge theory the expectation value of the Polyakov line, which is defined as
Lren(µq) = exp(−Ω∞(µq)/2T ), is the order parameter of the confinement/deconfinement transi-
tion, but not in the case of dynamical quarks in the simulations. However, one can interpret the
Ω∞(µq)/2 as the grand potential of one quark or one antiquark in dense quark matter. Thus one
may expect that in the confined phase Ω∞(µq) is much larger than that in the deconfined phase.

The color-singlet grand potential Ω1(r,µq) is defined as

Ω1(r,µq)

T
=− log〈T̃r(L~xL†

~y)〉+ c′(µq) . (2.3)

Notice that this potential is not gauge invariant, so, in order to calculate Ω1(r,µq) one has to fix
the gauge. In this study we choose conventionally the Coulomb gauge. Also color-singlet, color
averaged grand potential Ωq̄q(r, µq) and color-triplet grand potential Ω3(r,µq) are constrained by
the following relation [15] (note that Nc = 2):

exp
(
−

Ωq̄q(r,µq)

T

)
=

1
4

exp
(
−

Ω1(r,µq)

T

)
+

3
4

exp
(
−

Ω3(r,µq)

T

)
. (2.4)

It is also worth to note that at short distances (rµq � 1) the running of the coupling constant is
determined by the scale ∼ 1/r, and the influence of the chemical potential on the running coupling
can be neglected. The perturbative one-gluon exchange expression for the grand potentials at short
distances has the form Ω1(r,µq) =−3Ω3(r,µq)+O(g4) =−g2(r)

8πr +O(g4).
To perform the renormalization of the grand potentials we follow the procedure proposed

in [1, 2, 3], adopted here for the calculation at finite density. We fix the renormalization constant
c′(µq) through the matching condition for Ω1(r,µq) at short distances to the short distance behavior
of the interaction potential V (r). The renormalization for the grand potential Ωq̄q(r,µq) can be fixed
using matching at large distances r, where the color averaged and the color singlet grand potentials
are expected to be identical. Evidently, this procedure allows us to get rid of the divergent self-
energy contributions and uniquely fixes the renormalization constants c(µq) and c′(µq).

The renormalized Ωq̄q(r,µq) is plotted in Fig. 1 for different values of the chemical potential.
One can observe that Ωq̄q(r,µq) shows the plateau already at µ = 447 MeV. This happens because
of the string breaking phenomenon, which for µ = 447 MeV takes place at r ∼ 0.5 fm. Of course
string breaking occurs also for smaller chemical potentials, but we do not observe it, as it takes
place beyond available distances. From Fig. 1 one also sees that the larger the chemical potential,
the smaller the distance at which the string breaking takes place.
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Figure 1: The Ωq̄q as a function of distance for
few values of the chemical potential under study.
The black curve is the potential of the static quark-
antiquark pair at zero density and temperature. Note
the absence of a Coulombic small distance regime,
due to smearing.
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Figure 2: The screening length calculated from
equation (3.1) as a function of chemical potential.
Black dashed lines represent mean squared radii√
〈r2〉 of charmonia. The blue dashed line is the

description of the screening length Rsc by the De-
bye screening formula (4.2).

3. String breaking in dense quark matter

To study the string breaking phenomenon we introduce the screening length Rsc which can be
calculated from the solution of the equation [1]

Vµ=0(Rsc) = Ωq̄q(∞,µq) , (3.1)

where Vµ=0(r) is the static potential at zero density. For Ωq̄q(∞,µq) we take the grand potential
calculated from the renormalized Polyakov loop measured on the lattice, the results are shown in
Fig. 2. This plot tells us that the larger is µq the smaller is the string breaking distance.

In order to understand this behaviour, let us recall that in three-color QCD the string breaking
phenomenon can be explained by the possibility to break the string between static quarks by a
quark-antiquark pair created from vacuum. If the length of the string is larger than the critical one
it becomes energetically favorable to break the string and form two heavy-light meson instead of
increasing the length of the string. In dense two-color QCD in addition to the possibility to break
the string by quark-antiquark pairs it becomes possible to break the string by two quarks. As the
result of this phenomenon, after the string has been broken, one ends up with a heavy-light meson
and one heavy-light diquark. Due to confinement, the two quarks have to be extracted from some
hadron. The two-color baryon – the scalar diquark is a good candidate for such a hadron. Indeed
at nonzero µq the scalar diquark is a lightest state in the system. This picture is supported at large
µq in the BCS phase, where one has a Fermi sphere with radius µq. Evidently one cannot break the
string by taking two quarks deep inside the Fermi sphere, since in that case, the quarks which break
the string due to the interactions have to move from one point of the Fermi sphere to some other
point inside the Fermi sphere. However, all points inside the Fermi sphere are occupied. So, the
only possibility to break the string is to take two quarks close to the Fermi surface. In the confined
phase, quarks on the Fermi surface are condensed as diquarks. Thus we again confirm the picture
that two quarks, which break the string, can be taken from the available diquarks.

3
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If one increases the chemical potential then at some density Rsc becomes so small that the
string cannot be created, i.e. at the instant of creation it will be immediately broken by the two-
color baryons – diquarks. This is our hypothesis of the deconfinement mechanism in two-color
dense quark matter. It is not clear how to find unambiguously the distance at which the string
ceases to be stable. Using figure 2 one can infer that the interactions in this interval are screened,
as the chemical potential is within µq ∈ (900, 1300) MeV and which agrees with the position of
the confinement/deconfinement transition observed in [14].

In addition to the Rsc in figure 2 we plot the average heavy quarkonia J/Ψ, χc, ψ ′ radii which
where estimated in Appendix B of [16] within a simple potential model. It is clear that if the
screening length is close to the heavy quarkonium radius this state is considerably modified by
dense quark matter. From figure 2 one sees that the heaviest state the ψ ′ due to its rather large
radius should be considerably modified at nonzero density before the transition to BEC phase. The
χc meson will instead be modified in the BEC phase. Finally we predict that the J/Ψ meson will
be modified in dense quark matter but before the deconfiment region. Notice, however, that if the
radius of a charmonium equals to the Rsc at some density n0, the dissociation of this charmonium
will take place at densities larger than n0.

4. Debye screening in dense quark matter

In the region µq > 900 MeV the system under study undergoes transition from the confined
to the deconfined phase (see Fig. 3). In the deconfined phase the contribution of the string state is
absent and one may attempt to describe the screening in a dense quark-gluon plasma via an analogy
with the Abelian theory, i.e. purely Coulombic Debye screening. The scale of the Debye screening
in perturbation theory is denoted by the Debye mass, which to one-loop order (for the Nc = 2) reads

m2
D(µq) =

4
π

αs(µq)µ
2
q . (4.1)

To describe the results for the Rsc introduced in the previous section it is reasonable to assume
that the screening length is inversely proportional to mD(µq), thus we fit our data by the formula

Rsc =
1

AmD(µq)
, (4.2)

where the A is the fit parameter. The data is fitted in the region µq ∈ (900, 1800) MeV with the
use of a two-loop approximation for αs(µq) with N f = Nc = 2. The fit describes our data well
(χ2/do f ' 0.8) and the best fit parameters are A = 1.4± 0.4, Λ = 140± 80 MeV. In the region
µq > 1800 MeV the data cannot be described by the formula (4.2).

Let us study how the Debye screening phenomenon manifests itself in the large distance be-
havior (rµq� 1) of the grand potential. In this case the dominant scale is the chemical potential,
i.e. the running coupling constant depends only on µq: g(r,µq) = g(µq). For sufficiently large
density one can apply perturbation theory to calculate grand potentials. Perturbatively the grand
potential Ωq̄q(r,µq) is determined by two-gluon exchange and it is rapidly decreasing with dis-
tance function. Contrary to Ωq̄q(r,µq) the color singlet grand potential Ω1(r,µq) is determined by
one-gluon exchange.
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Figure 3: String tension σ and spatial string tension
σs between quark-antiquark pair as functions of the
chemical potential.

0.20 0.25 0.30 0.35 0.40 0.45 0.50

µa

0.4

0.6

0.8

1.0

1.2

1.4

1.6

m
D
(µ
)/
µ

1000 1200 1400 1600 1800 2000 2200

µ,MeV

Figure 4: The ratio mD/µ as a function of the
chemical potential calculated from the fit of lattice
data by formula (4.3).

In this study we consider only Ω1(r,µq), whose leading order contribution has the form

Ω1(r,µq) = Ω1(∞,µq)−
3
4

αs(µq)

r
e−mDr , (4.3)

where mD is the Debye mass given by the expression (4.1). It tells us that due to Debye screening
at sufficiently large distance the expression (Ω1(∞,µq)−Ω1(r,µq))r is an exponentially decreasing
function of the distance. We indeed observe such exponential decrease at large distance starting
from µq ∼ 850 MeV, what confirms Debye screening phenomenon in deconfined dense quark mat-
ter. The deviation from a purely Coulombic Debye-like behavior at intermediate distances may be
related to the remnants of the string, which is not perfectly screened.

Further we fit our data in the deconfinement phase for Ω1(r,µq) at sufficiently large r by
the formula (4.3). The results for mD/µq as a function of the chemical potential are shown in
figure 4. From figure 4 it is seen that the dependence of the Debye mass on the chemical potential
is mD ∼ µq. Due to large uncertainties of the calculation, we are not able to resolve the running
of the coupling constant with µq. The running coupling is constant within the uncertainty of the
calculation for µq < 1800 MeV and it starts to drop in the region µq > 1800 MeV. In addition one
can expect that the one-loop formula for the Debye mass (4.1) is considerably modified by higher
order radiative corrections. In the deconfined phase at finite temperature and zero density one also
obtains a large coupling constant (see e.g. [2, 3]).

5. Conclusion and discussion

The aim of the present paper was the study of the interaction between a static quark-antiquark
pair in two-color dense quark matter. We studied the screening phenomenon in dense SU(2) QCD.
In the confined phase, the screening length is determined by the string breaking length, whereas
in the deconfined phase Rsc is determined by the Debye screening phenomenon. The result of the
calculation of the screening length shows that, consistent with intuition, the larger the chemical
potential is, the smaller is the string breaking distance. We believe that the decrease of the string
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breaking distance with density can be attributed to the following string breaking mechanism in
dense matter. In dense two-color QCD, in addition to the possibility to break the string by a quark-
antiquark pair, it becomes possible to break the string by two quarks which can be extracted from a
two-color baryon – the scalar diquark. As the result of this phenomenon, after the string breaking
one ends up with one heavy-light meson and one heavy-light diquark. Lattice studies show [17]
that in the region µq > mπ/2 the scalar diquark condensate increases with the chemical potential,
i.e. it becomes easier to find two quarks and to break the string. At some density Rsc becomes so
small that the string cannot be created at all. Once created it will be immediately broken by the
two-color baryons – the scalar diquarks. This is our hypothesis of the deconfinement mechanism
in two-color dense quark matter.

The behavior of the string breaking distance in dense matter and the deconfinement mechanism
are not specific only for two-color QCD. We believe that a similar process can be realized in SU(3)
QCD with the difference that one has to replace two-quark baryon in SU(2) by three-quark baryon
in SU(3). In particular, one can expect that the screening length, which has the same definition as
in two-color QCD, is decreasing function of the chemical potential. For three colors this behavior
can be explained as follows: at non-zero chemical potential one has a nonzero baryon density in
the system. Baryons which form this density can break the string, splitting it into one quark and
one diquark. Notice that one does not need additional energy to create the baryon since the baryons
are already present, due to the nonzero chemical potential. After the string breaking one has one
heavy-light meson and heavy-light baryon. Finally, the larger the chemical potential is, the larger is
the number of baryons which can break the string, i.e. the string breaking distance is a decreasing
function of the chemical potential.

We calculated the Debye mass and the coupling constant for various chemical potentials. The
coupling constant extracted in this way takes on values αs ∼ 1, which tells us that despite the large
baryon density, the system remains strongly coupled. We found that the region µ < 2000 MeV
physically differs from the region µq > 2000 MeV, which manifests itself in different behavior of
the following observables: the Polyakov line, the grand potential, the screening length Rsc and
the Debye mass. While we do not yet fully understand the physics, which is responsible for this
behavior, one possibility is that the value of the chemical potential µq ∼ 2000 MeV is exceptional
since it divides the region with finite spatial string tension from that where it vanishes. This may
imply that the point µq ∼ 2000 MeV separates systems with and without magnetic screening.
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