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1. Motivations

The medium created in heavy-ion collisions and the hard probes chosen to study it are char-
acterized by several energy scales. These energy scales and the dynamics of the related degrees of
freedom make the study of the full system extremely challenging.

The medium is characterized by several thermodynamical scales that identify different regimes:
quark-gluon plasma formation, electrical screening, magnetic screening, and others. Thermal loop
functions are quantities suited to assess the size of some of these scales on the lattice. Indeed, com-
paring thermal loop functions in perturbation theory with lattice results allows to establish at which
temperatures (if any, as g ∼ 1) we may rely on weak-coupling calculations, and at which temper-
atures not, at which temperatures and distances electrical screening sets in, at which temperatures
and distances other screening masses become relevant, and so on.

Quarkonia are possible hard probes of the medium. A scale that characterizes quarkonia is
their size. Quarkonia of different sizes will react differently to the medium. Loop functions that are
correlators of gauge fields separated by a distance r describe static quark-antiquark pairs. On the
lattice we may vary r and the temperature T in a controlled way establishing what is the relevant
interaction at any r and T . Another scale is the binding energy, which for static QQ̄ pairs amounts
to the static potential.

For long time the in medium static potential was identified with some free energies defined
from suitable correlators. This is no more so: the potential describes the real-time evolution of the
QQ̄ pair, which is, in general, not the case for the free energies; it also has an imaginary part coming
from the quarkonium dissociation through scattering with the partons in the medium [1, 2, 3].
Nowadays, the real and imaginary real-time potentials are computed on the lattice by dedicated
studies [4, 5, 6]. Nevertheless, free energies still offer a clean and controlled setting where to study
the thermal dynamics of a static QQ̄ pair. Moreover, at least the singlet free energy provides a good
approximation of the real part of the real-time static potential.

Finally, relevant degrees of freedom describing the real-time evolution of a QQ̄ pair in a
medium are QQ̄ pairs in a color singlet (bound) and color octet (unbound) configuration, re-
flecting the color decomposition 3⊗ 3̄ = 1⊕ 8 [3]. Color octet QQ̄ states are relevant for the
out of equilibrium evolution of the QQ̄ pair in the medium through the reactions (QQ̄)1 ←→
(QQ̄)8 + gluons [7, 8]. Thermal loop correlators allow to access also QQ̄ color octet degrees
of freedom.

2. Loop functions

Loop functions are quantities that can be computed in lattice QCD and that are relevant for the
dynamics of static sources in a thermal bath at a temperature T [9]. Several loop functions have
been defined and measured over time. Here, we will focus on the following three.

Figure 1: Polyakov loop.
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The Polyakov loop average in a thermal ensemble at a temperature T , depicted in Fig. 1, is
defined as

P(T )|R ≡
1
dR
〈TrLR〉, P(T )|F = e−FQ/T , (2.1)

where R stands for the color representation of the gauge fields, dA = N2−1, dF = N, N = 3 is the
number of colors, the trace is over the color matrices, and

LR(x) = P exp
(

ig
∫ 1/T

0
dτ A0(x,τ)

)
, (2.2)

is a straight Wilson line spanning from the Euclidean time 0 to 1/T at the position x; P stands for
path ordering of the color matrices. The quantity FQ is the free energy associated to the Polyakov
loop in the fundamental representation, or, in physical terms, to a static quark Q.

Figure 2: Polyakov loop correlator.

The thermal average of two Polyakov loops separated by a distance r, shown in Fig. 2, is called
Polyakov loop correlator:

Pc(r,T )≡
1

N2 〈TrLF(r)TrL†
F(0)〉= e−FQQ̄/T , (2.3)

where we have taken the Polyakov loops in the fundamental representation. Also in this case we
can define a free energy, FQQ̄, which is the free energy of a static quark-antiquark (QQ̄) pair.

Figure 3: Singlet correlator.

If we consider the thermal average of the trace of two Wilson lines separated by a distance r
and spanning from 0 to 1/T , see Fig. 3, then we consider a gauge dependent quantity. In Coulomb
gauge, for Wilson lines in the fundamental representation, it is called the singlet correlator:

Ws(r,T )≡
1
N
〈TrLF(r)L†

F(0)〉= e−FS/T . (2.4)
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The corresponding free energy is the singlet free energy, FS.
Other correlators, like the gauge invariant cyclic Wilson loop, have been discussed and com-

puted in the literature, see e.g. [10, 11, 12], but will not be analyzed further here. Extensive discus-
sions on the renormalization of the loop functions, which will also not be discussed here, can be
found in [13, 14, 15] and references therein.

3. Polyakov loop

The Polyakov loop enters in all quark-antiquark correlators and free energies. It also allows to
determine the crossover temperature to the quark-gluon plasma, Tc.

The Polyakov loop average in the color representation R up to O(g3) is given by:

P|R = 1+
CRαsmD

2T
, (3.1)

where CR is the Casimir of the representation R (CF = (N2−1)/(2N), CA = N). The Debye mass,
mD, is an effective mass for temporal modes dynamically generated by the plasma:

Π00(k0 = 0, |k| � T )≈ m2
D =

2N +n f

6
g2T 2, (3.2)

where Π00 is the temporal component of the gluon self energy and n f the number of light (massless)
flavors. In a weakly coupled plasma, one typically assumes the hierarchy of energy scales πT �
mD∼ gT �mM ∼ g2T , where mM is the magnetic mass. Beyond O(g3), it is convenient to compute
the Polyakov loop average as the exponential of a reduced number of diagrams

P|R = 1+CR +C2
R +CR

(
CR−

CA

2

)
+C2

R + . . .

= exp
[
CR − 1

2
CRCA + . . .

]
, (3.3)

where the dots stand for contributions of order g6 or higher. We see that at the lowest perturbative
orders the exponent is proportional to CR, a property that goes under the name of Casimir scaling.

The Polyakov loop average up to O(g4) reads [10, 16]:

P|R = 1+
CRαs

2
mD

T
+

CRα2
s

2

[
CA

(
ln

m2
D

T 2 +
1
2

)
−n f ln2

]
. (3.4)

The logarithm, lnm2
D/T 2, signals that an infrared divergence at the scale T has canceled against an

ultraviolet divergence at the scale mD.
Finally, the Polyakov loop average up to O(g5) reads [17]:

lnP|R =
CRαs(µ)mD

2T
+

CRα2
s

2

[
CA

(
1
2
+ ln

m2
D

T 2

)
−n f ln2

]
+

3CRα2
s mD

16πT

[
3CA +

2
3

n f (1−4ln2)+2β0

(
γE + ln

µ

4πT

)]
−

CRCFn f α
3
s T

4mD
−CRC2

Aα3
s T

mD

[
89
48

+
π2

12
− 11

12
ln2
]
, (3.5)

3



P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
2
0
1
8
)
1
6
5

Loop functions at finite temperature from perturbation theory to lattice QCD Antonio Vairo

where β0 = (11N−2n f )/3. Owing to the gauge invariance of the Polyakov loop, the result could
be checked in several gauges, like Feynman gauge, Coulomb gauge, static gauge (∂0A0 = 0) and
phase-space Coulomb gauge [18].

Figure 4: Hierarchy of dimensionally reduced EFTs and Polyakov loop.

The Polyakov loop average may be computed also using dimensionally reduced effective field
theories (EFTs), see Fig. 4. In this case, one can take advantage of several existing results, in par-
ticular in Refs. [19, 20], and the calculation up to O(g5) becomes mostly a matter of reorganizing
them. In the framework of dimensionally reduced EFTs it is also straightforward to estimate the
order at which non-perturbative contributions carried by the magnetic mass, mM, show up first.
In the EFT at the magnetic mass scale (MQCD), the Polyakov loop average gets the contribution
ZM

1 /(2m3
D)×〈F̃a

i jF̃
a

i j〉, which is of order α2
s /m3

D×m3
M ∼ g7 as ZM

1 ∼ α2
s . This implies that the high-

est order at which the Polyakov loop average may be computed in perturbation theory is g6, which
is a computation yet to be done, but in reach of present days techniques. The order g6 contribution
is the last missing piece of the perturbative expansion of the Polyakov loop. The assessment of the
size of the non-perturbative contributions provides a further test of the full QCD calculation, as all
Feynman diagrams involving the magnetic mass that could potentially contribute to the Polyakov
loop at orders lower than g7 have to cancel.

Figure 5: Casimir scaling violating diagrams at O(g8).

By close inspection of the Feynman diagrams contributing to the Polyakov loop, one can show
that Casimir scaling holds up to O(g7) (including mM contributions). Casimir scaling violating
diagrams appear first at O(g8). These are diagrams like the ones shown in Fig. 5, which contain
terms proportional to [17]

C(4)
R = f i1a1i2 · · · f i4a4i1 1

dR
Tr [T a1

R · · ·T
a4

R ] , with
C(4)

F

C(4)
A

=
CF

CA

N2 +2
N2 +12

. (3.6)

The fact that Casimir scaling is only tinily violated by the Polyakov loop is confirmed also by
lattice determinations that so far do not show any evidence of violation [21, 22].
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Figure 6: Quark free energy (left) and entropy (right) at leading order (LO), next-to-leading order (NLO)
and next-to-next-to-leading order (NNLO) versus quenched lattice data from [21]. The bands are obtained
by varying the renormalization scale between πT and 6πT . From [17].

In Fig. 6 we compare the perturbative expansion of the quark free energy, FQ, and entropy, SQ,

SQ =−∂FQ(T )
∂T

, (3.7)

with quenched lattice data. The temperature T is related to the number of temporal lattice steps, Nτ ,
and the lattice spacing, a, through aNτ = 1/T . The entropy is a useful quantity to look at, as it does
not depend on the normalization shift. We see an overall good agreement between perturbation
theory and lattice data. Nevertheless, in particular the entropy data show also a possible sensitivity
to the missing order g6 contribution at high temperatures.

T [MeV]

SQ(T) LO

NLO, µ=(1-4)π T

NNLO

lattice
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Figure 7: Entropy at LO, NLO and NNLO versus 2+1 flavor QCD lattice data with Nτ = 4. The bands are
obtained by varying the renormalization scale between πT and 4πT . From [23].

In Fig. 7 we compare the perturbative expansion of the quark entropy, SQ, with 2+1 flavor
QCD lattice data. Again, we observe good agreement between perturbation theory and lattice data
at high temperatures. At low temperatures (not in the plot) the entropy shows a peak. The position
of the entropy peak is at TS = 153+6.5

−5 MeV, a value that is consistent with the crossover temperature
to the quark-gluon plasma [24, 25].

4. Polyakov loop correlator

The correlator of two Polyakov loops located at a distance r allows to compute the free energy

5
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of a static QQ̄ pair, FQQ̄. Eventually, effective field theories allow to link the correlator also to
suitably defined QQ̄ color singlet and color octet free energies.

The correlator of two Polyakov loops and the corresponding QQ̄ free energy, see Eq. (2.3),
depend on several energy scales: 1/r, αs/r, ..., πT , mD, ... . A strict perturbative expansion, i.e.
a series in powers of g, requires πT � mD� αs/r. Moreover we may require, 1/r� πT , which
implies that the non-perturbative magnetic mass is parametrically smaller than all above scales
and, in particular, smaller than the Coulomb potential, αs/r. The condition 1/r� πT restricts the
validity of the results to short distances. Under these conditions the Polyakov loop correlator, once
divided by the Polyakov loop average squared, reads up to order g6 [26]

exp
[

2FQ−FQQ̄

T

]
up to g6

= 1+
N2−1

8N2

{
α2

s (1/r)
r2T 2 − 2αs(1/r)αs(4πT )mD(4πT )

rT 2

+
N2−2

6N
α3

s (1/r)
r3T 3 +

αs(1/r)α2
s

2πr2T 2

(
31
9

N− 10
9

n f +2β0γE

)
+

2αs(1/r)α2
s

rT

[
N
(

1− π2

8
+ ln

T 2

m2
D

)
+n f ln2

]
− 2πNαs(1/r)α2

s

9
+

α2
s (4πT )m2

D(4πT )
T 2 +2αs(1/r)α2

s

(
4
3

N +n f

)
ζ (3)rT

− 2παs(1/r)α2
s

(
22

675
N +

7
270

n f

)
(rπT )2

}
+O

(
g6(rπT )4) , (4.1)

and at order g7

exp
[

2FQ−FQQ̄

T

]
g7
=

N2−1
8N2

{
−N2−2

2N
α2

s (1/r)αs(4πT )mD(4πT )
r2T 3

− 2α2
s αs(4πT )mD(4πT )

4πrT 2

(
31
9

N− 10
9

n f +2β0γE

)
− 3αs(1/r)α2

s mD

4πrT 2

[
3N +

2
3

n f (1−4ln2)+2β0γE

]
+

(N2−1)n f

2N
αs(1/r)α3

s

rmD
+

2N2αs(1/r)α3
s

rmD

[
89
24

+
π2

6
− 11

6
ln2
]

− 2α2
s αs(4πT )mD(4πT )

T

[
N
(
−1

2
+ ln

T 2

m2
D

)
+n f ln2

]
− αs(1/r)αsm3

D
3T 3 rT +

2πNα2
s αs(4πT )mD(4πT )

9T
rT

− 2α2
s αs(4πT )mD(4πT )

T

(
4
3

N +n f

)
ζ (3)(rT )2

+
2α2

s αs(4πT )mD(4πT )
T

(
22

675
N +

7
270

n f

)
(rπT )3

}
+O

(
g7(rπT )4) . (4.2)

The scale of αs is an arbitrary renormalization scale µ , if not differently specified. We notice that
in this setting FQQ̄ at leading order is not the Coulomb potential.

In Fig. 8 we compare FQQ̄ given by the above perturbative expression with 2+1 flavor lattice
data at short distances and at a high temperature [12]. We find good agreement.

6
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Figure 8: The (twice the quark free energy) subtracted QQ̄ free energy at short distances at T = 1600 MeV,
computed on a 2+1 flavor lattice, compared to the most accurate perturbative expression given in the text.
The band follows from varying the renormalization scale from πT to 4πT . From [12].
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Figure 9: The QQ̄ free energy computed on a 2+1 flavor lattice. The dark gray band shows the T = 0 static
energy, and the light gray band shows the singlet free energy (see next section) at high temperatures and very
short distances. The horizontal bands correspond to 2FQ. From [12].

However, FQQ̄ has a more complicated behaviour with temperature and distance than the above
comparison may suggest. In Fig. 9 we show FQQ̄, measured on a 2+1 flavor lattice [12], over a wide
range of temperatures and distances. We see that at short distances and low temperatures FQQ̄ does
overlap with the T = 0 Coulomb potential, while the agreement with strict perturbation theory,
highlighted in the previous Fig. 8, requires somewhat higher temperatures. Eventually, at large
distances the correlator goes over to two infinitely separated Polyakov loops.

In order to understand the two regimes of the Polyakov loop correlator at short distances, it is
useful to look at the correlator in the EFT language of potential non-relativistic QCD (pNRQCD).
In pNRQCD, the Polyakov loop correlator, Pc(r,T ), can be put in the form [16, 26]

Pc(r,T ) =
1

N2

[
e− fs(r,T,mD)/T +(N2−1)e− fo(r,T,mD)/T +O

(
α

3
s (rπT )4)], (4.3)

where fs is a gauge-invariant QQ̄ color singlet free energy and fo a gauge-invariant QQ̄ color octet
free energy. The free energies fs and fo can be computed from the singlet and octet propagators in

7
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pNRQCD:

〈S(rrr,0,1/T )S†(rrr,0,0)〉
N

= e−Vs(r)/T (1+δs)≡ e− fs(r,T,mD)/T , (4.4)

〈Oa(rrr,0,1/T )Oa†(rrr,0,0)〉
N

= e−Vo(r)/T [(N2−1)P|A +δo
]
≡ (N2−1)e− fo(r,T,mD)/T , (4.5)

where N is a normalization factor, S and Oa are QQ̄ fields in a color singlet and octet configuration
respectively, Vs =−CFαs/r+ . . . and Vo =αs/(2Nr)+ . . . are the color singlet and octet, Coulomb-
like, static potentials respectively, P|A is the Polyakov loop in the adjoint representation, and δs and
δo stand for thermal loop corrections to the singlet and octet propagators.

From Eq. (4.3) it is clear that we may identify at least two possible regimes: a low temperature
regime, T �Vs (or rT � αs), for which the Polyakov loop correlator may be approximated by the
color singlet Coulomb potential, Pc ≈ e−Vs/T/N2. This is the gray band of Fig. 9. But we may also
identify a high temperature regime, T � Vs (or rT � αs), for which Pc is a linear combination of
e− fs/T and e− fo/T . The strict perturbative expansion in g that led to Eqs. (4.1) and (4.2) corresponds
to this last regime.

 0.2
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 0.5

 0.6

 0.7

 0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5
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226

240
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Figure 10: The octet free energy determined on a 2+1 flavor lattice with Nτ = 8 at different distances and
temperatures. From [12].

From Eq. (4.3), using the T = 0 lattice static potential as an input for fs and lattice data for Pc,
one can determine the octet free energy on the lattice, FO, see Fig. 10. In turn, FO should provide a
good approximation for the pNRQCD color octet free energy, fo. Indeed, in the short range we see
the onset of a repulsive Coulomb potential. The existence of a low and a high temperature regime in
the behaviour of the Polyakov loop correlator, Pc, and the relevance of the octet degrees of freedom
is well demonstrated by the two diagrams of Fig. 11. In the left panel, we see that at a sufficiently
low temperature the data are well described by the color singlet static potential alone (taken from
T = 0 lattice data). In the right panel, at a somewhat higher temperature, we see that the data not
only require a color octet potential, obtained by color rescaling the color singlet static potential, but
are also sensitive to the two-loop Casimir scaling breaking effects computed in Ref. [27].

At very large distances the Polyakov loop correlator gets screened, first by the Debye mass,
then by dynamically generated asymptotic screening masses. We refer to Ref. [12] (and, at this
conference, to Ref. [28]) for a complete and updated discussion.
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Figure 11: The (twice the quark free energy) subtracted QQ̄ free energy calculated on a 2+1 flavor lattice
with Nτ = 12 compared to the right-hand-side of Eq. (4.3) at a low temperature (left panel) and at a higher
temperature (right panel). The quark free energy is taken from lattice results (see Sect. 3). The color singlet
static potential, Vs, as well as the Casimir-scaling part of the color octet static potential, Vo, are reconstructed
from the static energy computed on the lattice. The Casimir scaling violating contribution to the octet
potential, δVo, comes from perturbation theory. From [12].

5. Singlet correlator in Coulomb gauge

The singlet correlator, Eq. (2.4), in Coulomb gauge allows to define a singlet free energy, FS.
Its expression up to order g4 at short distances reads [10, 26]

FS

T
= − N2−1

2N
αs(1/r)

rT

[
1+

αs

4π

(
31
9

N− 10
9

n f +2β0γE

)]
+

1
18
(
N2−1

)
α

2
s rπT

− N2−1
2N

(
4
3

N +n f

)
ζ (3)α2

s r2T 2 +
N2−1
12N

αsm3
D

T 3 r2T 2

+
N2−1

2N

(
22
675

N +
7

270
n f

)
α

2
s (rπT )3 +O

(
α

2
s (rπT )5,α3

s
)
. (5.1)

Similarly one may compute a free energy in the adjoint representation. The first two lines of
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Figure 12: The singlet free energy computed on a 2+1 flavor lattice. The dark gray band shows the T = 0
static energy. The horizontal bands correspond to 2FQ. From [12].

Eq. (5.1) coincide with the real part of the real-time static potential computed in Ref. [3]. If this
property will also hold at higher orders or if it is an accident valid only at the present accuracy is
an open question to be further investigated.
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Lattice data for FS are shown in Fig. 12. We see that, because there is no mixing and cancel-
lation with the octet potential at leading order, the singlet free energy follows the behaviour of the
T = 0 static potential for a wide range of distances and temperatures, before eventually becoming
sensitive to the screening induced by the Debye mass. This behaviour clearly distinguishes the
singlet free energy from the QQ̄ free energy discussed in the previous section. A more detailed
comparison of FS with the perturbative expression (5.1) at short distances is in Fig. 13.

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.05  0.1  0.15  0.2  0.25  0.3

[VS(r)-FS(r,T)]/T

T=500 MeV

O(g
5
)+const

Lattice(HISQ)

rT

Figure 13: The singlet free energy at short distances at T = 500 MeV subtracted of the T = 0 static potential,
computed on a 2+1 flavor lattice, compared to the most accurate perturbative expression given in the text.
The band follows from varying the renormalization scale from πT to 4πT . From [12].

As in the case of the Polyakov loop correlator, at very large distances the singlet correlator gets
screened, first by the Debye mass, then by dynamically generated asymptotic screening masses [12,
28].

6. Conclusions

In summary, the Polyakov loop has been computed up to order g5, the (subtracted) QQ̄ free
energy at short distances up to corrections of order g7(rπT )4, g8, and the singlet free energy at
short distances up to corrections of order g4(rπT )5, g6. Lattice calculations are consistent with
weak-coupling expectations. From the entropy of the Polyakov loop one can estimate a transition
temperature to the quark-gluon plasma of 153+6.5

−5 MeV.
The comparison of thermal loop functions with weak-coupling calculations enables to address

some fundamental questions, like the set-in region, in terms of temperatures and distances, of
screening. An open theoretical question is if one of the free energies, notably the singlet one, may
be related to the real-time potential. Finally, we have seen that effective field theories provide a
proper definition of the QQ̄ color octet free energy at short distances, which can be tested and
computed in lattice QCD.
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