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Electric dipole moments (EDMs) of nucleons and nuclei, which are sought as evidence of CP vio-
lation, require lattice calculations to connect constraints from experiments to limits on the strong
CP violation within QCD or CP violation introduced by new physics from beyond the standard
model. Nucleon EDM calculations on a lattice are notoriously hard due to large statistical noise,
chiral symmetry violating effects, and potential mixing of the EDM and the anomalous magnetic
moment of the nucleon. In this report, details of ongoing lattice calculations of proton and neutron
EDMs induced by the QCD θ -term and the quark chromo-EDM, the lowest-dimension effective
CP-violating quark-gluon interaction are presented. Our calculation employs chiral-symmetric
fermion discretization. An assessment of feasibility of nucleon EDM calculations at the physical
point is discussed.
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1. Introduction

Observing a non-zero nucleon electric dipole moment (nEDM) will be evidence of violation
of T (CP)-symmetry beyond the level of the Standard Model (SM). The Standard Model itself
does not have sufficient magnitude of CP violation to explain the observed excess of matter over
antimatter in the Universe. Knowledge of nucleon structure and interactions is required to translate
precise EDM measurements, which are projected to improve by two orders of magnitude in the
next decade, into constraints on CP violation at the quark-gluon level and bounds on the strong
CP-violation (θQCD angle) as well as beyond-the-Standard-Model (BSM) theories. Such nucleon
structure calculations are possible only with nonperturbative lattice QCD methods. (Effective)
interactions that can induce nucleon EDM have to be P- and CP-odd, and can be classified by their
dimension [1]

L CP = ∑
i

ci

Λ
di−4
(i)

O
[di]
i , (1.1)

where di are the dimensions of the effective interaction densities Oi and Λ(i) are the scales of
the underlying, more fundamental interactions that cause them. We use lattice QCD with chiral
quark action to calculate the nEDM induced by the d = 4 θQCD-term, as well as by the chromo-
electric moment, the lowest-dimension (d = 5) effective quark-gluon CP-odd interaction that may
be generated by extensions of the Standard Model:

∑
x

L CP
x = iθQCDQ+ i∑

x
∑
q

δ̃qC
q
x ,

Q =
1

16π2 ∑
x

Tr
[
Ĝµν

˜̂Gµν

]
x , (1.2)

C q = q̄
[1

2
(Ĝµνσµν)γ5

]
q , (1.3)

where Ĝµν = g(Gpert
µν )aλ a is the gluon field strength defined in su(3) algebra with generators sat-

isfying Tr[λ aλ b] = 1
2 δ ab and ˜̂Gρσ = 1

2 εµνρσ Ĝµν . On a lattice, this gluon field corresponds to a
1× 1 plaquette UP

x,µν ≈ 1+ ia2Ĝx,µν +O(a4) but is typically approximated to higher order in the
definition of Q. In addition, we calculate nEDM induced by the pseudoscalar density

Pq = q̄γ5 q , (1.4)

which are necessary for renormalizing the chromo-EDM operator C .

2. CP-odd nucleon structure on a lattice

Nucleon electric dipole moments on a lattice can be calculated as the forward limit of the
P,T -odd electric dipole form factors (EDFF) F3 [2, 3, 4, 5, 6, 7, 8, 9],

〈p′,σ ′|Jµ |p,σ〉
��CP = ūp′,σ ′

[
F1(Q2)γµ +

(
F2(Q2)+ iF3(Q2)

) iσ µνqν

2MN

]
up,σ , (2.1)

where Q2 =−q2 and q = p′− p. Extrapolation Q2→ 0 is required to obtain the nEDM d = F3(0)
because the F3 contribution vanishes from Eq. (2.1) at Q2 = 0. CP-odd interactions that induce
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nEDM are introduced as either fixed additional terms in the lattice QCD action or as first-order
perturbations to nucleon correlation functions. In the latter case, the nucleon-current correlators in
��CP vacuum are

SQCD→ SQCD + iδCPS = SQCD + i∑
i,x

ci[O
CP
i ]x , (2.2)

〈N [q̄γ
µq] N̄〉

��CP =
1
Z

∫
DU D q̄Dqe−S−iδCPS N [q̄γ

µq] N̄ ≈CNJN̄− i∑
i

ci δ
CP
i CNJN̄ , (2.3)

where CNJN̄ = 〈N [q̄γµq] N̄〉 and δCP
i CNJN̄ = 〈N [q̄γµq] N̄ ∑x[O

CP
i ]x〉 are the nucleon-current corre-

lation function and its CP-odd perturbation, both evaluated in the usual CP-even QCD vacuum.
To compute the matrix elements (2.1) and extract the EDFF F3(Q2), we calculate the nucleon and
nucleon-current correlators

{δCP}CNN̄(~p, t) = ∑
~x

e−i~p·~x〈N~x,tN̄~0,0 {δCPS}〉
��CP , (2.4)

{δCP}CNJN̄(~p
′, tsep;~q, top) = ∑

~y,~z
e−i~p′·~y+i~q·~z〈N~y,tsepJµ

~z,top
N̄~0,0 {δCPS}〉 . (2.5)

with and without insertions of the CP-odd interactions. More details on the analysis of the form
factors can be found in a recent paper [9], where spurious contributions to nEDM due to parity
mixing 〈vac|N|p〉 ∼ eiα5γ5up were discovered.

It has to be stressed that the correct treatment of the mixing and careful determination of the
mixing angle α5 are critical for correct extraction of EDM values on a lattice. This is evident from
the following example: the nucleon EDFF can be extracted from the timelike component of the
vector current, which has the following CP-odd correction to the matrix element between nucleon
states polarized in the î-th direction,

〈~p′ = 0|V4|~p =−~q〉
��CP ∝

qi

m

[
(1+ τ)F3(Q2)+α5GE(Q2)

]
, (2.6)

with τ = Q2/(4M2
N) and GE the Sachs electric form factor. For the proton with nonzero charge

Q = GE p(0) = 1, a biased value of α5 will lead to an incorrect lattice EDM value. For the neutron
with GEn(0) = 0, this may be less problematic. However, the nonzero contribution of GEn for
Q2 > 0 can make extraction of the neutron EDM from the Q2→ 0 extrapolation more complicated
(e.g., require more sophisticated Q2 fits) as well as affect the Q2-dependence of the EDFF and the
neutron’s Schiff moment F ′3n(0).

Table 1: Gauge ensembles used in this study. The second column shows the action used and the reference
where the ensemble was analyzed.

L3
x×Lt ×L5 SF [Ref] a [fm] mπ [MeV] mN [GeV] Conf Obsv.

243×64×16 DWF[10] 0.1105(6) 340(2) 1.178(10) 1400 θ -nEDM
483×96×24 MDWF[11] 0.1141(3) 139.2(4) 0.945(6) 130 P ,C -nEDM

In this study, we use ensembles of QCD gauge configurations generated by the RBC/UKQCD
collaboration employing Iwasaki gauge action and N f = 2+1 dynamical chiral-symmetric fermions

2
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with (Möbius) domain wall action (see Tab. 1). One ensemble has unphysical heavy pion mass
mπ ≈ 340 MeV and is used to study the θQCD-induced nEDM. The reason for using a heavy pion
mass is that the effect of θQCD term is reduced at lighter quark masses (and vanishes in the chi-
ral limit), therefore physical light-quark calculations would be extremely challenging. An esti-
mate is provided in the next section. The other ensemble is generated with a physical pion mass
mπ ≈ 139 MeV and is used to calculate nucleon form factors and nEDMs induced by quark-gluon
chromo-EDMs in QCD with realistic parameters.

3. Nucleon EDM induced by the θQCD-term

Studying θQCD-induced nEDM is complicated by the statistical noise due to the global nature
of the topological charge (1.2). Its fluctuation (δQ)2 = 〈Q2〉∝ V4 grows with the lattice volume V4

and leads to large statistical uncertainty in CP-odd correlation functions (2.4,2.5). As suggested in
Refs. [8, 12], contributions to Q from distant sites may be neglected in computing nEDM. However,
spatial restriction of Q may bias EDM results, for example if the “effective” parity mixing angle α5

is different in the nucleon (2.4) and the nucleon-current (2.5) correlation functions, as indicated by
Eq. (2.6). Such difference may be produced by non-identical spatial or timelike restriction of the
partial topological charge in these CP-odd Green’s functions, which results in nucleon interpolating
operators acting on vacua with different amount of CP violation. To illustrate this point, consider
the��CP interaction that is turned on at some moment t < 0. The QCD vacuum takes some Euclidean
time ∆t to evolve into the new CP-violating state |vac〉 → |vac〉

��CP. Nucleon operators N̄ acting on
such transient vacuum state will have time-dependent overlap 〈ñ|N̄|vac(t)〉 with the new nucleon-
like states |Ñ(±)〉 = |N(±)〉± iα5|N(∓)〉 leading to ambiguity in the extracted values of the parity-
mixing angle α5 and EDFF F3. A similar argument applies to the nucleon sinks.

Figure 1: Constrained sampling of the topological
charge density (3.1) for reducing the statistical noise
in the CP-odd three-point correlation functions (2.5),
as well as the CP-odd two-point correlation func-
tions (2.4).

To avoid this ambiguity, in our study we restrict the topological charge estimator separately in
time and space to a cylindrical volume VQ (Fig. 1),

Q̃(∆tQ,rQ) =
1

16π2 ∑
x∈VQ

Tr
[
Ĝµν

˜̂Gµν

]
x , (~x, t) ∈VQ :

{
|~x−~x0| ≤ rQ ,

t0−∆tQ < t < t0 + tsep +∆tQ ,
(3.1)

where t0 is the location of the nucleon source and t0 + tsep is the location of the nucleon sink.
The CP-odd correlation functions (2.4,2.5) are computed entirely inside the region (3.1) where
CP violation is present (i.e. where the reduced topological charge Q̃ is sampled). The timelike
cuts applied to Q̃ are symmetric with respect to the nucleon sources and sinks and equal in the
nucleon (2.4) and nucleon-current (2.5) correlation functions. Additionally, we restrict Q̃ sampling

3
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in space to a 3D ball centered on the nucleon source, to further reduce the stochastic noise on large-
volume lattices. However, this restriction may interfere with the momentum projection in Eq.(2.5)
that requires summation over all~y and~z. We emphasize that convergence with rQ must be verified
at each momenta combination p′ and q to avoid bias, especially in computing the Q2-dependence
of the EDFFs and the Schiff moments.

0 200 400 600 800 1000 1200 1400 1600 1800
cfg

−20

−15

−10

−5

0

5

10

15

20

Q
(c

fg
)

−40 −30 −20 −10 0 10 20 30 40
Q(tgf)

0

20

40

60

80

100

120

140

N
cf
g

tgf/a
2 = 2

tgf/a
2 = 4

tgf/a
2 = 6

tgf/a
2 = 8

tgf/a
2 = 10

Figure 2: The Monte Carlo evolution history (left) and the distribution (right) of the global topologi-
cal charge. The topological charge is computed with “5-loop-improved” field strength tensor [13] using
gradient-flowed gauge links (only tg f /a2 = 8 shown on the left). Also shown on the right are the Gaussian
distributions with the corresponding values of 〈Q2〉 for a range of tg f /a2.

We use the lattice QCD ensemble with unphysical heavy pion mass mπ ≈ 340 MeV (see Tab. 1)
to enhance the nEDM value in this preliminary study, since the θQCD-induced EDM decreases with
decreasing mq ∝ m2

π . We calculate 64 low-precision and 1 high-precision samples using the AMA
sampling method [14]. We analyze 1,400 gauge configurations separated by 5 MD steps to obtain
89,600 samples; samples from each 10 MD steps (2 adjacent gauge configurations) are binned
together. The topological charge density in Eq. (3.1) is calculated from “5-loop-improved” field
strength tensor Ĝµν [13] computed from gradient-flowed [15, 16, 17] gauge fields(τGF = 8a2).
The Monte Carlo evolution history of the total topological charge and its distribution are shown in
Fig. 2.
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Figure 3: The nucleon parity mixing angle (3.2) and its dependence on the spatial and temporal cuts in the
reduced topological charge Q̃(∆tQ,rQ).

First we study the effect of reduced topological charge sampling on the mixing angle α5. The
mixing angle α5 is estimated with the {t,∆tQ,rQ}-dependent ratio

α̂
e f f
5 (t) =−

Tr
[
T+γ5 δCP

Q̃(∆tQ,rQ)
CNN̄(t)

]
Tr
[
T+CNN̄(t)

] t→∞
=

α5

θ
. (3.2)
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where T+ = 1+γ4
2 is the positive-parity projector. Results for different values of ∆tQ, rQ are shown

in Fig. 3. We generally observe convergence to the results obtained with the full topological charge
Q (1.2) for ∆tQ & 8a. However, for the spatial cut rQ there is no convergence up to rQ ≈ 12a, which
is ≈ 52% of the spatial volume. We conclude that the lattice volume V3 = (24a)3 ≈ (2.7 fm)3 is
insufficient to benefit from the spatial cut rQ, and should be explored with larger spatial volumes.
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Figure 4: Proton and neutron electric dipole form factors induced by the θQCD-term from lattice calculations
with mπ ≈ 340 MeV (only quark-connected contractions) and their dependence on the spatial and temporal
cuts in the reduced topological charge (∆tQ,rQ).

The neutron and proton electric dipole form factors F̂θ
3n,p = Fθ

3n,p/θ computed for a range of
∆tQ,rQ values are shown in Fig.4. We compute only connected diagrams in this study. The values
for F̂θ

3 are obtained using Eq. (2.6) with one value of source-sink separation tsep = 8a. Similarly
to α5, we observe convergence for ∆tQ & 8a but lack of convergence for rQ . 12a. Most impor-
tantly, we observe statistically significant value for the neutron F3 even with the full value of the
topological charge Q, which has no bias from reduced sampling Q→ Q̃(∆tQ,rQ). We can make a
very preliminary “ballpark” estimate for the value of F̂θ

3n(0)≈ 0.05 at this heavy pion mass, which
should be taken with a 100% uncertainty since it does not take into account excited state effects
or extrapolation Q2→ 0. This value should only be used to check consistency with phenomenol-
ogy and earlier lattice QCD calculations. For example, the corrected value from calculations with
Wilson fermions [5] constrains |F̂θ

3 (0)| . 0.06 at a close value of the pion mass mπ ≈ 360 MeV.
Leading-order extrapolation [18, 19] d̂θ

n ∝ mu,d ∝ m2
π to the physical point yields values

|F̂θ ,phys
3n | ≈ 0.01 , or |d̂θ ,phys

n |= e
2mN
|F̂θ ,phys

3n | ≈ 0.001e · fm , (3.3)

which is consistent with estimates from ChPT and the QCD sum rules [1].
Using our rough estimate for F̂θ

3n, we can project the effort required for computing nEDM
at the physical point, which is required to avoid model dependence due to pion mass extrapola-
tions mπ → mphys

π . We have performed initial calculations using physical-quark ensembles with

5
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Figure 5: Proton and neutron electric dipole form factors induced by θQCD-term from lattice calculations
with physical quark masses.

mπ ≈ 139 MeV (see Tab. 1) with ≈ 33,000 statistical samples and very aggressive time and space
cuts in the topological charge estimator Q̃(∆t = 2a,rQ = 16a). We observe no signal for the neu-
tron EDFFs (see Fig. 5), and the results are consistent with zero with the statistical uncertainty
δF3n ≈ 0.05 . . .0.10. In comparison to the estimate (3.3) above, we expect that the current signal-
to-noise ratio (SNR) ≈ 0.01/0.05 = 0.2 has to be improved at least by a factor of 5-10, which
requires ×(25 . . .100) more statistics. Alternative computing methods may have to be employed
such as dynamical (imaginary) θ I-term first explored in Ref. [4]. Because nEDM calculations
depend on contributions from non-trivial topological sectors, dynamical θ I-term improves impor-
tance sampling for the EDM signal by inducing nonzero average topological charge 〈Q〉 6= 0. The
dynamical θ I-term becomes more important at lighter pion masses, where light quarks suppress
the fluctuation of the topological charge.

4. Nucleon EDM induced by quark chromo-EDM

In this section, we report results from the ongoing calculations of nucleon EDM induced by
the dimension-5(6)1 chromo-electric quark-gluon interaction (1.3). We use the physical point en-
semble (see Tab. 1) and evaluate 256 low-precision and 4 high-precision samples on each of 130
statistically-independent gauge configurations separated by 40 MD steps, for the total of 33,280
statistical samples. All samples from the same gauge configuration are binned together.

The results for the nucleon mass and energies with momenta up to |~p| ≈ 0.72GeV are shown
in Fig. 6. These energies are extracted with unconstrained 2-state fits for a number of fit ranges
starting at tmin/a = 2,3,4, and are all consistent with each other. The momentum dependence of
the nucleon energy (Fig. 6, right) is compared to the continuum dispersion relation, and its close
agreement indicates that the discretization errors are small.

1Quark-gluon chromo-EDM operator has dimension 6 above the electroweak scale due to the Higgs field factor
required by the electroweak symmetry.

6



P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
2
0
1
8
)
1
9
4

Neutron EDM induced by chromo-EDM and θQCD Sergey Syritsyn

0 5 10 15 20
t

0.5

0.6

0.7

0.8

0.9

1.0
E

ef
f

[0 0 0]
[0 0 1]
[0 1 1]
[1 1 1]
[0 0 2]
[0 1 2]
[1 1 2]
[0 2 2]
[1 2 2]
[0 0 3]
[0 1 3]

0.0 0.1 0.2 0.3 0.4 0.5 0.6

p2 [GeV]2

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

E
0
(f

it
)
[G

eV
]

t=[2:15]
t=[3:15]
t=[4:15]

Figure 6: (Left) Nucleon masses and energies computed with 2-state fits. Results from fits in three ranges
with tmin/a = 2,3,4 are shown with shaded bands and are consistent for each lattice momentum. (Right)
Nucleon energy vs. momentum in physical units. The dashed lines show the continuum dispersion relation
that uses the lattice mass value mN = EN(~p = 0).
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Figure 7: Nucleon electromagnetic form factors (connected contributions) from lattice calculations with
physical quark masses.

In Figure 7, we show preliminary results for the proton and neutron electromagnetic Sachs
form factors GE,M p,n(Q2) and their comparison with the phenomenological fits to experimental
data [20]. These form factors are extracted using the standard “ratio” method (see, e.g., Ref. [21])
for five fixed source-sink separations tsep = (8 . . .12)a as well as 2-state fits using the state energies
obtained from the nucleon two-point correlation functions. Magnetic form factors GMp,n show
reasonable agreement with phenomenology. However, the electric form factors GE p,n disagree for
both the proton and the neutron, which may be attributed to the missing contribution from the
disconnected contractions, which are not currently evaluated.
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Figure 8: Connected (top) and disconnected (bottom) lattice contractions for computing nucleon electric
dipole form factors induced by chromo-EDM.

Calculation of cEDM-induced nucleon EDM require insertions of quark bilinear operators (1.3),
separately for each flavor. The lattice gluon field strength Ĝµν in the chromo-EDM density (1.3)
on a is computed with the symmetric (“clover”) operator using only square 1×1 plaquettes,[

Ĝµν

]clov
x =

1
8i

[
(UP

x,+µ̂,+ν̂
+UP

x,+ν̂ ,−µ̂
+UP

x,−µ̂,−ν̂
+UP

x,−ν̂ ,+µ̂
)−h.c.

]
. (4.1)

We evaluate only fully connected diagrams for both the CP-even and CP-odd correlation func-
tions (2.4,2.5), which are shown in Fig.8(top) for the latter. Disconnected diagrams (see Fig.8,
bottom), which are required for a complete unbiased calculation of isoscalar EDMs and effects of
isoscalar quark chromo-EDMs, are more computationally demanding and will be evaluated in the
future.
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Figure 9: Proton and neutron electric dipole form factors induced by (lattice bare) chromo-EDM from lattice
calculations with physical quark masses. Only connected contributions.

In Figure 9 we show proton and neutron EDFF induced by the unrenormalized (bare lattice)
quark chromo-EDM C . These form factors are extracted using the “ratio” method with fixed
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Figure 10: Proton and neutron electric dipole form factors induced by (lattice bare) quark pseudoscalar
density from lattice calculations with physical quark masses. Only connected contributions.

source-sink separations tsep = (8 . . .10)a. Data shows signal for both C and P . There is a peculiar
dependence of nEDM on the flavor structure of CP violation: the proton and the neutron EDMs are
induced by the CP violation in the “unpaired” flavors, i.e. in u- and d-quarks, respectively. Finally,
in Figure 10 we show the nucleon EDM induced by the quark pseudoscalar density that is required
for renormalizing and mixing subtraction for results shown in Fig. 9.

The final results for the chromo-EDM-induced nucleon EDMs require renormalization, that
has to be computed nonperturbatively on a lattice. One proposed scheme is RI-SMOM, and pertur-
bative matching to the MS scheme has been calculated [22]. Another approach is the position-space
scheme [23, 24], calculations of perturbative matching for which are underway.

5. Summary and Outlook

Calculations of nEDM on a lattice are important for interpreting constraints or results from
nucleon and nuclei EDM measurements. Ongoing calculations of nEDM induced by dim-5(6)
quark-gluon CP violation show promising results at the physical point. However, their final preci-
sion will depend on renormalization that has not been computed yet, and renormalized results may
require substantially more statistics. In contrast, calculations of θQCD-induced nEDM at the physi-
cal point will be challenging and will require special techniques to tame the statistical noise caused
by fluctuations of the global topological charge. Direct calculations at the physical point may be
at the limit of the current computing capabilities, and one may have to use ChPT extrapolations of
unphysical heavy-pion results. Another approach is to simulate QCD with dynamical θ I

QCD term to
enhance importance sampling for the��CP observables.
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