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The so-called chiral soliton lattice was recently found to describe the ground state of the dense
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also in condensed-matter systems such as chiral magnets. Motivated by the fact that the QCD-like
theories such as the two-color QCD are accessible to the lattice simulations even at finite densities,
we continue this work by investigating the ground state of the two-color QCD in strong magnetic
fields. The analytic approach of low-energy effective field theory is used, hence, as a first step
the gauged Wess-Zumino term reproducing the chiral anomaly has to be found. The well-known
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1. Introduction

An inhomogeneous neutral pion condensate was recently found to form the ground state of
dense QCD matter in a strong magnetic field [1, 2]. Similar phase appears for chiral magnets [3]
and its name Chiral Soliton Lattice (CSL) was adopted, since also in the QCD case, the chiral sym-
metry is broken by this ground state formed by a periodic array of topological solitons. A crucial
ingredient for appearance of this phase is the coupling of neutral pions to the electromagnetic field
due to the chiral anomaly which then also implies that the neutral pion condensate carries non-zero
baryon charge and magnetic moment. Consequently, already for chemical potentials in the range
of 400− 800MeV, the baryon density reaches values of few-times nuclear saturation density [2]
and the CSL phase could be relevant for the physics of neutron stars if the magnetic fields of the
order of 1018−19 G were present.

Let us emphasize that the above result is fully analytic and, based on systematic low-energy ef-
fective theory, it is also model-independent. The comparison with the lattice calculations would be
desirable, however, due to notorious sign problem present for QCD with non-zero baryon chemical
potential, such lattice results can’t be expected in near future.

Our aim is to find a similar phase in a theory which does not suffer from the sign problem
and, hence, could be tested by lattice methods. A class of QCD-like theories with quarks in real
or pseudo-real representations of the gauge group fits this requirement, the simplest example be-
ing the so-called two-color QCD based on SU(2) gauge group with quarks in the fundamental
representation [4].

Remarkably, if N f copies of quarks reside in (pseudo)real representation of the gauge group,
the flavor symmetry is extended from usual SU(N f )L× SU(N f )R to SU(2N f ). The chiral con-
densate 〈qq̄〉 then breaks this symmetry to SO(2N f ) or Sp(2N f ) in the real or pseudoreal case,
respectively. The effective field theory based on SU(2N f )/SO(2N f ) or SU(2N f )/Sp(2N f ) coset
spaces has to be used, accordingly.

As mentioned above, the coupling of neutral pions to electromagnetic field arises as a con-
sequence of the chiral anomaly which is captured by the so-called Wess-Zumino-Witten (WZW)
term [5, 6] in the chiral perturbation theory. This term is well known in case of the usual QCD
SU(N f )L×SU(N f )R → SU(N f )V symmetry breaking pattern, however, the explicit formulas for
the gauged WZW terms for general coset spaces are missing. More precisely, the results are known
for the chiral coset spaces of the type GL×GR/GV (see, e.g., [7]) and certain information on the
WZW terms for general coset spaces is available in the mathematically oriented literature [8, 9],
however, substantial mathematical background and lengthy calculations are needed in order to
translate the latter results to explicit formulas usable for physics applications. Therefore, general
formulas for the gauged WZW terms where derived as a part of this project. This could provide
an input not only for our study of QCD-like theories in strong magnetic fields, but also for various
other physics applications of these topological terms.

The text is organized as follows. In section 2 we describe the construction of WZW terms
based on the theory of cohomology whereas the results obtained in this way are summarized in
section 3. Particle physics applications of the gauged WZW terms are discussed in section 4 and
we conclude in section 5 with some preliminary implications for the case of our interest, the QCD-
like theories in strong magnetic fields.
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2. WZW terms and the theory of cohomology

The so-called coset construction [10, 11] is a well-established method for finding G-invariant
Lagrangian densities describing the interactions of the Goldstone bosons corresponding to the spon-
taneous symmetry breaking of a group G to its subgroup H. On the other hand, it is sufficient that
the action is G-invariant and the Langrangian density can be invariant only up to a surface term.
There are also phenomenological reasons why to believe that the terms included in the coset con-
struction are not sufficient: the chiral anomaly (responsible, e.g., for the decay π0 → γγ) is not
captured by these terms.

The term which describes the chiral anomaly in case of QCD was first recognized by Wess
and Zumino [5]. Its nice geometrical interpretation was revealed later by Witten [6]: it was shown
that the Lagrangian density invariant up to a surface term in 4 spacetime dimensions can be written
as an invariant Lagrangian in 5 dimensions. This statement was generalized to other coset spaces
in [12], let us present here the argument for spacetimes with general dimension d.

First, let us assume that the boundary conditions in the infinity allow the compactification of
the d-dimensional spacetime to a sphere Sd . If in addition the d-th homotopy group of the coset
space G/H is trivial1: πd(G/H) = 0, the Goldstone boson field U(x) can be extended to a mapping
Ũ(x, t), t ∈ [0,1] by putting Ũ(x,1) = U(x), Ũ(x,0) = 0. This mapping then attains values in a
d + 1-dimensional disc Dd+1 in G/H with the boundary U(Sd). Well-defined G-invariant actions
which do not depend on the extension Ũ(x, t) correspond to closed G-invariant d + 1-forms ωd+1

on G/H. Such closed forms can be (at least locally) written as a differential of a d-form ω̃d and by
the Stokes theorem we find

SWZW ∝

∫
Dd+1

ωd+1 =
∫

Dd+1
dω̃d =

∫
U(Sd)

ω̃d =
∫

Sd
U∗ω̃d . (2.1)

If the d-form U∗ω̃d representing the Lagrangian density is G-invariant, such a term would be cov-
ered already in the coset construction. Hence, the case when the forms U∗ω̃d are not G-invariant
is of most interest. The corresponding forms ωd+1 are then closed but not exact, i.e., they are gen-
erators of the d +1st de Rham cohomology group of G/H. Indeed, it was shown in [12] that these
generators are in one to one correspondence with the terms in the Lagrangian density invariant up
to a total derivative (under the conditions on homotopy of G/H mentioned above).

In [9] the cohomology generators of degrees 2, 3, 4 and 5 were explicitly constructed for any
coset space G/H and compact, connected group G. On the other hand, the gauged versions of
these generators were given only implicitly, in terms of lower-degree differential forms satisfying
certain hierarchy of equations. In [14] we follow the work [9] by finding the explicit formulas
for the gauged cohomology generators and the corresponding Lagrangian densities. For simplicity
we restrict ourselves to semi-simple and simply-connected G and connected H which ensures that
G/H is simply connected (the way, in which this condition can be relaxed is described in [9]).
Selection of our results is given in the next section.

Let us note, that the proportionality sign in (2.1) was used since the normalization of the dif-
ferential forms describing the WZW term is not fixed by the symmetry-based differential geometry
methods used here. The normalization factor has to be found eventually by the matching to the

1For a classification of WZW terms avoiding the assumption on homotopy see [13].
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underlying microscopic theory. This factor is required to be quantized in order to obtain an action
independent of the extension Ũ(x, t) if the homotopy group πd+1(G/H) is nontrivial [6].

3. Results: Gauged WZW terms for a general coset space

For sake of brevity, we include here only the results for the case d = 4 which is of most
relevance for particle physics. All the results are given in terms of differential forms, the dictionary
for translating these to ordinary Lagrangian densities can be found in [14].

3.1 Notation

Let us summarize the notation largely adopted from [9] which will be used for expressing our
results. First of all, we choose to work with the anti-hermitian generators of the group G satisfying

[TA,TB] = f C
AB TC. (3.1)

We index by capital Latin letters the generators of G in general, specifically, the generators of the
unbroken subgroup H will be denoted as Tα,β ,..., whereas the broken generators as Ta,b,.... As in the
coset construction [10, 11] we introduce the matrix Goldstone field U transforming as

U
g−→U ′ = gUh−1, (3.2)

for g ∈G and h = h(g,U) ∈H. We assume from the beginning that the symmetry is gauged, i.e., g
is local. The gauged Maurer-Cartan (MC) Lie-algebra valued 1-form is defined as

θ̄ ≡ θ̄
ATA ≡U−1(d+A)U = θ + Ā, (3.3)

where θ ≡ θ̄ |A=0. Further, A ≡ ABTB is the gauge connection of G transforming as A
g−→ gAg−1 +

gdg−1. Let us note that if one wants to compare our results with other works where the generators
of G are chosen to be Hermitian, the replacement A→−iA is needed.

The transformation rule for the MC form reads θ̄
h−→ hθ̄h−1+hdh−1. It is then handy to divide

this form to broken and unbroken parts:

φ̄ ≡ θ̄
aTa

h−→ hφ̄h−1, V̄ ≡ θ̄
αTα

h−→ hV̄ h−1 +hdh−1 (3.4)

where V̄ behaves as a gauge connection of H. The corresponding field strength 2-form can be
defined as2

W̄ ≡ dV̄ +V̄ 2 h−→ hW̄h−1. (3.5)

Analogously, the gauge connection of G gives rise to another field-strength 2-form

F ≡ dA+A2 g−→ gFg−1. (3.6)

Finally, let us recall that the gauged MC form satisfies the MC structure equation

dθ̄ + θ̄
2 =U−1FU ≡ F̄ , dθ̄

A + 1
2 f A

BCθ̄
B
θ̄

C = F̄A. (3.7)

2Let us note that we will be omitting the wedge symbol in the products of differential forms. Recalling also the
matrix structure of V̄ , this means, e.g., V̄ 2 = Tα Tβ θ̄ α ∧ θ̄ β = 1

2 [Tα ,Tβ ]θ̄
α ∧ θ̄ β = 1

2 f γ

αβ
Tγ θ̄ α ∧ θ̄ β .
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All the forms φ̄ , W̄ and F̄ then transform linearly under the adjoint action of H and can be used
as covariant building blocks when constructing invariant Lagrangians. In addition, their covariant
derivatives can be formed using the gauge connection V̄ . On the other hand, differential forms
which are not G-invariant will be also constructed in this work, consequently, it is useful to intro-
duce ungauged versions of the forms above:

φ = φ̄ |A=0, V = V̄ |A=0, W = dV +V 2. (3.8)

3.2 Results for d = 4

As discussed in [9], the generators of the 5th de Rham cohomology group are classified by
constant fully symmetric G-invariant tensors dABC which vanish on the unbroken subgroup H, i.e.,
dαβγ = 0. Up to an overall scale, such a tensor is unique for any simple compact Lie group, and
is non-vanishing only in case of SU(N) groups with N ≥ 3. Considering semi-simple groups, the
most general fully symmetric invariant tensor can be expressed as

dABC =
1
2 ∑

j
d j tr j(TA{TB,TC}) (3.9)

where j runs over all simple components of G, the trace is done over the j-th simple component
and the set of coefficients d j is constrained only by the fact that dαβγ = 0. It is then possible to
introduce a shorthand matrix notation for the differential forms constructed below if one defines

〈X〉 ≡∑
j

d j tr j X . (3.10)

Our main result concerning the gauged generator of the 5th de Rham cohomology group for
general G/H can be then expressed as

ω5 =
〈 1

10 φ̄
5− 1

2(W̄ + F̄)φ̄ 3 +(W̄ 2 + F̄2)φ̄ + 1
2(W̄ F̄ + F̄W̄ )φ̄

〉
. (3.11)

This form is G-invariant but in general not closed,

dω5 = dABCFAFBFC =
〈
F3〉. (3.12)

Since dαβγ = 0, this expression is vanishing when only unbroken generators are gauged. There is,
however, an obstruction to gauging the broken generators which is related to the appearance of the
chiral anomaly in the underlying microscopic theory as will be shown below. Let us first observe
that the right-hand side of (3.12) is the third Chern character which can be written as a differential
of the Chern-Simons 5-form:

ω
CS
5 =

〈
F2A− 1

2 FA3 + 1
10 A5〉, dω

CS
5 =

〈
F3〉. (3.13)

Consequently, the form ω5−ωCS
5 is closed and gives rise to a well-defined action in four spacetime

dimensions. However, this form is not gauge-invariant:

δω
CS
5 =−dA4, A4 =

〈
ε d
(
AdA+ 1

2 A3)〉. (3.14)
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The last expression corresponds to the well-known formula for the so-called consistent anomaly3

[15].
Using transgression methods [8], a 4-form corresponding to the gauge-field-dependent part of

the WZW term can be found:

ω5A ≡ ω5(A)−ω5(0)−ω
CS
5 = dω̃4A

ω̃4A =
〈1

2 φ
3(Ā+ Ā‖)+ 1

4 φ Ā⊥φ(Ā+ Ā‖)+ 1
2 φ

2[Ā⊥, Ā‖]

+φ(1
2 Ā3
⊥+

3
4 Ā2
⊥Ā‖+ 3

4 Ā‖Ā
2
⊥+

1
2 Ā2
‖Ā⊥+

1
2 Ā‖Ā⊥Ā‖+ 1

2 Ā⊥Ā2
‖+ Ā3

‖)

+ 1
2 Ā⊥Ā3

‖−
1
2 Ā‖Ā

3
⊥− 1

4 Ā‖Ā⊥Ā‖Ā⊥+ 1
2 F̄ [Ā+ 1

2 Ā‖,φ ]

+ 1
2(W̄ +W )[1

2 Ā+ Ā‖,φ ]+ (1
2 F̄ + 1

2W̄ + 1
4W )[Ā‖, Ā⊥]

〉
. (3.15)

As anticipated, the forms which are not G-invariant do not have a simple canonical expression in
terms of covariant building blocks mentioned in section 3.1. The symbols ‖ and ⊥ are used to
indicate the unbroken and broken part of the 1-form Ā defined in (3.3), respectively.

3.3 Simplification in case of symmetric coset spaces

For the symmetric coset spaces G/H one can introduce an automorphism R of the Lie algebra
under which the generators of H do not transform: R(Tα) = Tα whereas the broken generators
change the sign R(Ta) =−Ta. If one chooses a parametrization of U where this matrix is inverted
by the automorphism R (which is the case, e.g., for the exponential parameterization U(x) =
eiπa(x)Ta with πa(x) denoting the Goldstone fields), it is possible to define a field variable that
transforms linearly under the whole group G [10, 11],

Σ(x)≡U(x)2, Σ
g−→ gΣR(g)−1. (3.16)

Projecting the broken and unbroken parts of the relevant differential forms using the automorphism
R, one obtains

ω̃4A =
〈
− 11

32 dΣdΣ
−1dΣΣ

−1A+ 5
32 dΣ

−1dΣdΣ
−1

ΣAR + 3
32 dΣARdΣ

−1A+ 11
64 dΣΣ

−1AdΣΣ
−1A

− 5
64 dΣ

−1
ΣARdΣ

−1
ΣAR + 1

4 dΣdΣ
−1

ΣARΣ
−1A− 1

4 dΣ
−1dΣΣ

−1AΣAR (3.17)

− 9
32 dΣΣ

−1AΣARΣ
−1A+ 7

32 dΣ
−1

ΣARΣ
−1AΣAR + 3

32 dΣARΣ
−1A2− 5

32 dΣ
−1AΣA2

R

+ 5
32 dΣA2

RΣ
−1A− 3

32 dΣ
−1A2

ΣAR + 13
32 dΣΣ

−1A3− 3
32 dΣ

−1
ΣA3

R + 1
8 ΣARΣ

−1AΣARΣ
−1A

− 5
16 ΣARΣ

−1A3 + 3
16 Σ
−1AΣA3

R + 1
8(−dΣFRΣ

−1A−dΣARΣ
−1F +dΣ

−1FΣAR +dΣ
−1AΣFR)

− 7
16 dΣΣ

−1{F,A}+ 1
16 dΣ

−1
Σ{FR ,AR}+ 3

8 ΣARΣ
−1{F,A}− 1

8 Σ
−1AΣ{FR ,AR}

〉
,

where the short-hand notation AR ≡R(A), FR ≡R(F) was introduced.

3Strictly speaking, the Chern-Simons 5-form is defined by the second relation in (3.13), hence, the expression for
ωCS

5 can be changed by adding a differential of any form depending on the gauge fields only. The form ω̃4A below and
the expression for the anomaly can be then changed accordingly, the choice for ωCS

5 (3.13) is distinguished by the fact
that the corresponding shape of the anomaly satisfies the so-called Wess-Zumino consistency conditions [15]. On the
other hand, in [9] a closed 5-form is defined as ω5(U,A)−ω5(1,A) leading to different representation of the anomaly.
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3.3.1 Chiral coset spaces GL×GR→ GV

Further simplification of (3.17) is possible for the well-explored case of GL×GR→ GV coset
spaces. Here, dαβγ = 0 must be ensured by a proper choice of di in (3.9), in particular, we have
used dL = 1 and dR = −1 in (3.10) for deriving the formula below. The generators of GL×GR

can be written as (TL,A,TR,B), with TL,A =±TR,B corresponding to unbroken and broken generators
respectively. The automorphism R then swaps the two entries in the parenthesis. In order to
comply with the notation usually used in QCD, we write the linearly transforming variable (3.16)
as (Σ,Σ−1) with Σ ∈ G. Further, the gauge fields are denoted as (AL,AR) and the corresponding
field-strength 2-form is denoted as (FL,FR). Using this notation, one obtains

ω̃4A = tr
(
− 1

2 dΣdΣ
−1dΣΣ

−1AL +
1
4 dΣΣ

−1ALdΣΣ
−1AL +

1
2 dΣdΣ

−1
ΣARΣ

−1AL (3.18)

− 1
2 dΣΣ

−1ALΣARΣ
−1AL +

1
4 dΣARΣ

−1A2
L +

1
4 dΣA2

RΣ
−1AL +

1
2 dΣΣ

−1A3
L

+ 1
8 ΣARΣ

−1ALΣARΣ
−1AL− 1

2 ΣARΣ
−1A3

L− 1
4 dΣFRΣ

−1AL− 1
4 dΣARΣ

−1FL

− 1
2 dΣΣ

−1{FL,AL}+ 1
2 ΣARΣ

−1{FL,AL}
)
− (Σ↔ Σ

−1, L↔ R).

This result agrees with [7] if one takes into account that the action remains unchanged if a differ-
ential of a 3-form is added to this 4-form.

3.3.2 SU(2N f )/SO(2N f ) and SU(2N f )/Sp(2N f ) coset spaces

Most importantly, the WZW term relevant for the case of quarks in (pseudo)real representa-
tions of the gauge group was derived. Both the relevant coset spaces can be defined by following
relations for unbroken and broken generators, respectively:

T T
α Σ0 +Σ0Tα = 0, T T

a Σ0−Σ0Ta = 0. (3.19)

Here Σ0 is a fixed real unitary matrix describing the ground state of the system which is sym-
metric in case of the SU(2N f )/SO(2N f ) coset space, whereas in case of SU(2N f )/Sp(2N f ), it is
antisymmetric. It can be chosen for instance in the block form

Σ0 =

(
0 1
1 0

)
(real), Σ0 =

(
0 1
−1 0

)
(pseudoreal). (3.20)

Both these coset spaces are symmetric which can be easily seen by introducing the automorphism
R(TA) =−Σ0T T

A Σ
−1
0 . The linearly transforming 2N×2N matrix variable Σ =U2 has the conjuga-

tion property ΣT = Σ0ΣΣ
−1
0 which allows to relate pairwise the terms in the general formula (3.17).

In the literature, it is usually introduced Σ̃(x) ≡ Σ(x)Σ0, with simple transformation properties
Σ̃

g−→ gΣ̃gT . In terms of this variable the WZW 4-form can be written as

ω̃4A = tr
(
− 1

2 dΣ̃dΣ̃
−1dΣ̃Σ̃

−1A+ 1
4 dΣ̃Σ̃

−1AdΣ̃Σ̃
−1A− 1

4 dΣ̃dΣ̃
−1

Σ̃AT
Σ̃
−1A+ 1

4 dΣ̃
−1dΣ̃Σ̃

−1AΣ̃AT

+ 1
2 dΣ̃Σ̃

−1AΣ̃AT
Σ̃
−1A− 1

2 dΣ̃Σ̃
−1A3 + 1

8 Σ̃AT
Σ̃
−1AΣ̃AT

Σ̃
−1A− 1

2 Σ̃AT
Σ̃
−1A3

+ 1
4 dΣ̃AT

Σ̃
−1dA− 1

4 dΣ̃
−1AΣ̃dAT − 1

2 dΣ̃Σ̃
−1{dA,A}− 1

2 Σ̃AT
Σ̃
−1{dA,A}

)
. (3.21)

Ironically, after going through the procedure of deriving gauged WZW terms for a general coset
space, we have found out that the WZW term for the SU(2N f )/Sp(2N f ) coset space (which is the
case of most interest for us since it corresponds to the two-color QCD), was derived previously in
the literature on the composite Higgs models [16, 17]. These results agree with ours except for the
sign of the ΣARΣ−1AΣARΣ−1A term.
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4. Other applications of WZW terms

Quantum field theories where the symmetry based on a group G is spontaneously broken to
H ⊂ G and the Goldstone bosons appear have wide applications in different branches of physics,
consequently, the same holds for the WZW terms. Numerous examples from condensed matter
physics were mentioned in [14], let us concentrate here on selected particle physics applications
where the gauging of the WZW term is relevant.

Apart from the obvious application in QCD, there are beyond-standard-model theories where
another QCD-like confining UV sector is assumed giving rise to extra pseudo-Goldstone bosons.
In the composite Higgs models, one of these pseudo-Goldstone bosons replaces the fundamental
scalar Higgs field of the Standard Model (SM), whereas other scenarios suggest that such pion-like
fields could form the dark matter (DM). There are in fact only three possibilities for the chiral sym-
metry breaking pattern in the UV theory corresponding to the extra quark-like fields in complex,
real and pseudoreal representations of the gauge group [18]. These are described respectively by
the GL×GR→GV, SU(2N f )/SO(2N f ) and SU(2N f )/Sp(2N f ) coset spaces which are exactly the
examples covered in sections 3.3.1 and 3.3.2.

For the composite Higgs models, the decay rates for the processes analogous to π0→ γγ from
QCD are proportional to number of “colors” in the UV gauge sector, hence, the gauged WZW term
could play a crucial role in probing the content of such theories on colliders [19, 17].

In case of the composite DM models, the role of the WZW model is two-fold. First, the 3→ 2
self-interactions of the DM particles determining the relic abundance are induced by the WZW term
similarly as the K+K−→ π+π0π− interaction in QCD [20]. Second, in [21] the coupling of the DM
sector to SM particles is ensured by gauging of a U(1) symmetry and mixing of the corresponding
vector boson Aµ with the SM hypercharge vector boson. The gauged WZW term then gives rise
to interactions of the type ππ → πV with π being the DM particles and V being the dark photon
(mixture of Aµ and the SM Zµ ). Such interactions could contribute to the determination of the relic
abundance and have to be suppressed so that the 3→ 2 self-interactions are dominant.

5. Conclusions and outlook

Formula for the gauged WZW term for a general coset space in four spacetime dimensions was
found and its simplified version for selected coset spaces was given (see [14] for more examples and
the WZW terms in case of d 6= 4). In particular, the coset spaces relevant for the QCD-like theories
were investigated which is a starting point for our analysis of these theories in strong magnetic
fields using the effective field theory methods. The result for the WZW term suggests that, indeed,
a phase analogous to CSL phase in QCD will be present, e.g., for the simplest case of the two-color
QCD with two quark flavours transforming in the fundamental representation which corresponds to
the SU(4)/Sp(4) coset space. We explicitely checked that there is a region in µB−B plane where
the CSL phase is energetically more favourable than both the vaccuum and the diquark condensate
phase which is also expected in the case of two-color QCD [4]. The detailed shape of the phase
diagram is under investigation and these results will be published elsewhere [22].
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