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1. Introduction and main results

Sufficiently cold and dense matter is a color superconductor in the color-flavor locked (CFL)
phase [1, 2]. CFL breaks baryon number conservation spontaneously and thus can be expected to
behave as a baryon superfluid. As a consequence, rotating CFL is expected to form topologically
stable quantized vortices [3, 4]. The energetically preferred "semi-superfluid" vortices [5, 6] carry
magnetic flux, which is of interest for the physics of neutron stars in whose cores CFL may exist.
CFL also allows for line defects which carry magnetic flux but no baryon circulation [8, 9]. These
"pure" magnetic flux tubes are not protected by topology, but can be stabilized through an external
magnetic field [7], and possibly may form in the evolution of neutron stars.

All these defects can be studied within a Ginzburg-Landau approach that contains three scalar
fields which are charged under one gluon field and one combination of a gluon and the photon.
This multi-component nature puts CFL in the wider context of other unconventional superconduct-
ing systems such as two-band superconductors [10] or a mixture of superfluid neutrons and super-
conducting protons in dense nuclear matter [11, 12, 13, 14]. For these systems it was shown that
the coupling of the superconductor to a second component (directly and/or through the gauge field
if both components are charged) induces unconventional behavior regarding the type-II regime,
where magnetic flux tubes are formed. This includes a modification of the critical value of the
Ginzburg-Landau parameter for the transition from type-I to type-II behavior, a first order tran-
sition from the Meissner phase to the phase with flux tubes, the existence of flux tube clusters
("type-1.5 superconductivity"), and the potential existence of multi-winding flux tubes. Here we
investigate this unconventional behavior in the CFL phase.

In some parts of these proceedings, Sec. 2, 3, and 5, we recapitulate the results of Ref. [7]
in a compact way. In addition, we present several novel results. Firstly, in Sec. 4 we discuss the
asymptotic behavior of line defects in CFL in a more general way than previously done, in the
presence of three potentially different components and allowing for both baryon circulation and
magnetic flux. This slightly generalizes earlier studies which only considered two components [15]
or only considered configurations without baryon circulation [7]. Secondly, and more importantly,
in Sec. 6 we present a systematic study of multi-winding flux tubes without baryon circulation. The
results of this study are as follows. We demonstrate that the new magnetic defect pointed out in
Ref. [7] is indeed the most preferred configuration in neutron star conditions by showing explicitly
that all other configurations have a larger free energy per magnetic flux. Unconventional behavior
regarding higher winding numbers can only be seen at small values of the strong coupling constant
and under the assumption that CFL is a type-II superconductor. While this is plausible at strong
coupling, at weak coupling this assumption requires a superconducting gap larger than predicted
from perturbative QCD. Possibly there is some intermediate regime where perturbative methods
fail such that type-II behavior is possible, while at the same time allowing for multi-winding flux
tubes.

In future studies it would be interesting to understand the behavior of CFL in the presence of
an external magnetic field and rotation. It is currently unknown which of the suggested defects
form in this case, possibly a combination of them, and whether and how they arrange themselves
in a regular lattice. This question is of high relevance for neutron stars, for instance for "color-
magnetic mountains", which are ellipticities of the star sustained by a color-superconducting flux
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tube lattice and which are potentially large enough to lead to detectable emission of gravitational
waves [16].

2. Ginzburg-Landau potential

The usual Ginzburg-Landau potential in the theory of superconductivity for a complex scalar
field φ and the spatial components of a U(1) gauge field A reads

U = |(∇+ ieA)φ |2−µ
2|φ |2 +λ |φ |4 + B2

2
, (2.1)

where the magnetic field is B = ∇×A and e =
√

4πα is the elementary charge with the fine
structure constant α (using Heaviside-Lorentz units), where λ > 0 is a coupling constant, and
µ can be viewed as a chemical potential. This potential can be generalized to more than one
complex field and more than one gauge field. In dense three-color, three-flavor quark matter, the
order parameter is a complex 3× 3 matrix Φ in the anti-triplet representations in color and flavor
space. Restricting ourselves to diagonal order parameters, we have three complex scalar fields,
Φ = diag(φ1,φ2,φ3). The homogeneous CFL state is given by φ1 = φ2 = φ3. Since we take into
account electromagnetism and QCD, there are in general 9 gauge fields: 8 gluons and the photon.
Having reduced the order parameter to a diagonal form, the number of gauge fields needed to
discuss magnetic flux tubes in CFL is reduced to 3, one gluon field A3

µ and two mixtures of the
eighth gluon and the photon,

Ã8
µ = cosθ A8

µ + sinθ Aµ , (2.2)

Ãµ = −sinθ A8
µ + cosθ Aµ , (2.3)

where the mixing angle is given by e and the strong coupling constant g [17],

cosθ =

√
3g√

3g2 +4e2
, sinθ =− 2e√

3g2 +4e2
. (2.4)

The corresponding Ginzburg-Landau potential up to fourth order in the fields can then be derived
from the potential for Φ and generalizes (2.1) to

U =
∣∣∣(∇+ i

g
2

A3 + ig̃8Ã8

)
φ1

∣∣∣2 + ∣∣∣(∇− i
g
2

A3 + ig̃8Ã8

)
φ2

∣∣∣2 + ∣∣(∇−2ig̃8Ã8
)

φ3
∣∣2

−µ
2(|φ1|2 + |φ2|2 + |φ3|2)+λ (|φ1|4 + |φ2|4 + |φ3|4)−2h(|φ1|2|φ2|2 + |φ1|2|φ3|2 + |φ2|2|φ3|2)

+
B̃2

2
+

B2
3

2
+

B̃2
8

2
. (2.5)

where we have neglected quark masses, and where the coupling to the rotated gluon is given by

g̃8 =

√
3g2 +4e2

6
. (2.6)

The potential (2.5) shows that the rotated magnetic field B̃ plays a trivial role; it simple penetrates
CFL since all scalar fields are neutral with respect to it. Therefore, the numerical calculation of
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magnetic flux tubes in CFL involves three scalar fields and two gauge fields. The parameters µ , λ ,
h can be computed within perturbative QCD, in which case they are [18]

µ
2 =

48π2

7ζ (3)
Tc(Tc−T ) , λ =

72π4

7ζ (3)
T 2

c

µ2
q
, h =− 36π4

7ζ (3)
T 2

c

µ2
q
, (2.7)

where µq is the quark chemical potential, T the temperature, Tc the critical temperature of CFL,
and ζ the Riemann zeta function. For the following derivations, we will keep µ , λ , h general. For
later convenience we define

η ≡ h
λ
. (2.8)

Later, in our numerical results we shall use the weak-coupling result η =−1/2. In general, bound-
edness of the potential requires η <+1/2, and it can be shown that, in the absence of a magnetic
field, CFL is the ground state for −1 < η < 1/2, which includes the weak-coupling value.

3. Equations of motion for flux tube profiles

In our discussion of line defects we restrict ourselves to straight lines and thus work in cylidri-
cal coordinates (r,ϕ,z). We write the scalar fields in terms of their modulus and phase,

φi(r) =
ρi(r)√

2
eiψi(ϕ) , ψi(ϕ) = niϕ , (3.1)

where n1,n2,n3 ∈ Z are the winding numbers, which determine the baryon circulation Γ and the
magnetic fluxes Φ3 and Φ̃8,

Γ =
π

3µq

n1 +n2 +n3

3
, Φ3 =

2π

g
(n2−n1) , Φ̃8 =

π

g̃8

2n3−n1−n2

3
. (3.2)

Nonzero baryon circulation makes the line defect a superfluid vortex, nonzero magnetic fluxes
make it a (color-)magnetic flux tube. In general, CFL line defects have both.

The gauge fields are written in terms of the dimensionless fields a3 and ã8,

A3(r) =
a3(r)

r
eϕ , Ã8(r) =

ã8(r)
r

eϕ . (3.3)

Inserting Eqs. (3.1) and (3.3) into the potential (2.5) and separating the contribution of the homo-
geneous CFL phase yields the free energy per unit length of a CFL flux tube,

F	
L

= πρ
2
CFL

∫
∞

0
dRRU	(R) , (3.4)

where ρ2
CFL = µ2/[λ (1− 2η)] is the condensate (squared) in the homogeneous CFL phase, i.e.,

far away from the flux tube, where we have introduced the dimensionless radial coordinate R =

r
√

λρCFL, and where the dimensionless free energy density of a flux tube is given by

U	 =
λ (a′23 + ã′28 )

R2 + f ′21 + f ′22 + f ′23 +
(1− f 2

1 )
2

2
+

(1− f 2
2 )

2

2
+

(1− f 2
3 )

2

2

+ f 2
1

N2
1

R2 + f 2
2

N2
2

R2 + f 2
3

N2
3

R2 −η

[
(1− f 2

1 )(1− f 2
2 )+(1− f 2

1 )(1− f 2
3 )+(1− f 2

2 )(1− f 2
3 )
]
. (3.5)
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Here we have introduced the dimensionless profile functions

fi(R) =
ρi(R)
ρCFL

, (3.6)

and have abbreviated

N1(R)≡ n1 +
g
2

a3(R)+ g̃8ã8(R) , N2(R)≡ n2−
g
2

a3(R)+ g̃8ã8(R) , N3(R)≡ n3−2g̃8ã8(R) .
(3.7)

We have not included the trivial B̃2 contribution into the free energy density (3.5). The flux tube
profiles are computed from the equations of motion

a′′3−
a′3
R

=
g

2λ

(
f 2
1 N1− f 2

2 N2
)
, (3.8)

ã′′8−
ã′8
R

=
g̃8

λ

(
f 2
1 N1 + f 2

2 N2−2 f 2
3 N3

)
, (3.9)

0 = ∆ f1 + f1(1− f 2
1 )− f1

N2
1

R2 −η f1(2− f 2
2 − f 2

3 ) , (3.10)

0 = ∆ f2 + f2(1− f 2
2 )− f2

N2
2

R2 −η f2(2− f 2
1 − f 2

3 ) , (3.11)

0 = ∆ f3 + f3(1− f 2
3 )− f3

N2
3

R2 −η f3(2− f 2
1 − f 2

2 ) , (3.12)

where ∆ is the radial part of the Laplace operator in cylindrical coordinates, ∆ fi = f ′′i +
f ′i
R . The

boundary conditions are fi(0) = 0 if ni 6= 0, else f ′i (0) = 0; fi(∞) = 1, a3(0) = ã8(0) = 0, a′3(∞) =

ã′8(∞) = 0. We solve these equations numerically with a successive over-relaxation method and
insert the result into (3.4) to obtain the free energy of a CFL flux tube. This yields a finite result
only if the baryon circulation vanishes. Before we discuss the numerical results without baryon
circulation, let us discuss the asymptotic behavior of the flux tubes for the general case.

4. Asymptotic behavior

To find the behavior of the profiles far away from the flux tube, we first notice that by evaluat-
ing all equations at R→ ∞ we find N1(∞) = N2(∞) = N3(∞) = m/3 with

m≡ n1 +n2 +n3 . (4.1)

With the ansatz a3(R) = a3(∞)+Rw3(R), ã8(R) = ã8(∞)+Rw̃8(R) for the gauge fields and fi(R) =
1+ui(R) for the scalar fields we find the linearized equations of motion,

∆w3−
w3

R2

(
1+

R2

κ2
3

)
' gm

3λR
(u1−u2) , (4.2)

∆w̃8−
w̃8

R2

(
1+

R2

κ̃2
8

)
' 2g̃8m

3λR
(u1 +u2−2u3) , (4.3)
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and

∆u ' Mu+
m2

9R2


1+u1

1+u2

1+u3

+
m
3R


gw3 +2g̃8w̃8

−gw3 +2g̃8w̃8

−4g̃8w̃8

 , (4.4)

where, in analogy to a single-component superconductor, we have introduced the Ginzburg-Landau
parameters for the two gauge fields

κ3 ≡

√
2λ

g2 , κ̃8 ≡

√
λ

6g̃2
8
=

√
2λ

g2 + 4
3 e2

, (4.5)

and we have defined

M ≡ 2

 1 −η −η

−η 1 −η

−η −η 1

 , u≡

 u1

u2

u3

 . (4.6)

Notice that besides w3, w̃8,ui� 1 this linearization also assumes w2
3, w̃

2
8� ui. It is convenient to

rotate the scalar fields such that M is diagonalized. We write ū =U−1u with U such that U−1MU =

diag(ν1,ν2,ν2), with the eigenvalues of M

ν1 ≡ 2(1−2η) , ν2 ≡ 2(1+η) . (4.7)

With the weak-coupling results (2.7), ν1 = 4, ν2 = 1. This transforms Eqs. (4.2) – (4.4) into(
∆− 1

κ2
3
− 1

R2

)
w3 ' −

gm
3λR

(ū2 +2ū3) (4.8)

(
∆− 1

κ̃2
8
− 1

R2

)
w̃8 ' −

2g̃8m
λR

ū2 , (4.9)

(
∆−ν1−

m2

9R2

)
ū1 '

m2

9R2 , (4.10)

(
∆−ν2−

m2

9R2

)
ū2 ' −

4g̃8m
3R

w̃8 , (4.11)

(
∆−ν2−

m2

9R2

)
ū3 ' −

m
3R

(gw3−2g̃8w̃8) . (4.12)

If the three winding numbers add up to zero, m = 0, i.e., in the case of a pure magnetic flux tube
without baryon circulation, all right-hand sides are zero and the equations completely decouple.
They have solutions in terms of modified Bessel functions of the second kind which, allowing for
the terms proportional to m2 on the left-hand sides to be nonzero, are

w3 = c3K1(R/κ3) , w̃8 = c8K1(R/κ̃8) , ū1 = d1Km/3(
√

ν1R) , ū2,3 = d2,3Km/3(
√

ν2R) ,
(4.13)

5
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zero circulation, m = 0 nonzero circulation, m 6= 0

w3 e−R/κ3 e−Rmin(
√

ν2,1/κ3)

w̃8 e−R/κ̃8 e−Rmin(
√

ν2,1/κ̃8)

u1,u2,u3 e−Rmin(
√

ν1,
√

ν2)
m2

9ν1R2

F	/L finite πρ
2
CFL

m2

3
ln

R
R0

+ finite

Table 1: Leading asymptotic behavior for gauge fields and scalar fields with and without baryon circulation,
in terms of the dimensionless radial coordinate R. The gauge fields become trivial, w3 = 0 and w̃8 = 0, if
n1−n2 = 0 and n1 +n2−2n3 = 0, respectively. The last row shows the logarithmic divergence of the free
energy per unit length for the case m 6= 0.

with constants c3, c8, d1, d2, d3, and the leading asymptotic behavior is obtained from

Kα(x) =
√

π

2x
e−x
[

1+
4α2−1

8x
+

(4α2−1)(4α2−9)
2!(8x)2 + . . .

]
. (4.14)

Undoing the rotation with U then yields the asymptotic behavior of the scalar fields, see first column
in Table 1.

Let us now discuss the case with baryon circulation, m 6= 0. In this case, the equation for ū1

(4.10) remains decoupled, and with a power-law ansatz one easily obtains

ū1 =−
m2

9ν1R2

[
1+

36−m2

9ν1R2 +
(36−m2)(144−m2)

81ν2
1 R4 + . . .

]
. (4.15)

This is the usual behavior of a superfluid vortex, which is expected since ū1 does not couple to
any gauge field. Next, consider Eqs. (4.9) and (4.11), which couple w̃8 and ū2. To determine the
leading asymptotic behavior we need to distinguish the cases ν2 > 1/κ̃2

8 and ν2 < 1/κ̃2
8 . Let us

start with the former. In this case, if the right-hand sides of Eqs. (4.9) and (4.11) were zero, such
that the solutions (4.13) would hold, ū2 would be suppressed stronger than w̃8. We can retain the
asymptotic behavior of the less suppressed function, w̃8 ∝ R−1/2e−R/κ̃8 . Inserting this expression
into the left-hand side of Eq. (4.9) yields a result of order R−5/2e−R/κ̃8 . We are thus allowed to
make an ansatz for ū2 at this order without violating Eq. (4.9), ū2 = d2R−3/2e−R/κ̃8 . This ansatz,
being less suppressed than ū2 would be in the absence of a baryon circulation, is needed to fulfill
Eq. (4.11), from which we obtain a relation between d2 and c8. We proceed analogously for the
case ν2 < 1/κ̃2

8 to obtain

ν2 > 1/κ̃
2
8 : w̃8 ' c8

√
πκ̃8

2R
e−R/κ̃8 , ū2 '

4mg̃8

ν2−1/κ̃2
8

w̃8

3R
, (4.16)

ν2 < 1/κ̃
2
8 : w̃8 '

2mg̃8

1/κ̃2
8 −ν2

ū2

λR
, ū2 ' d2

√
π

2
√

ν2R
e−
√

ν2R . (4.17)

It remains to insert these solutions into Eqs. (4.8) and (4.12) to determine the asymptotic behavior
for w3 and ū3. We first observe that the case of a vanishing A3 field is obtained from setting w3 = 0

6
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and ū3 =−ū2/2, which implies u1 = u2 for the unrotated fields. This is the case discussed in Ref.
[15]. If w3 is nonzero, let us first consider the case ν2 > 1/κ2

3 . Then, after neglecting w̃8 and ū2

in Eqs. (4.8) and (4.12), these equations have exactly the same structure as just discussed for Eqs.
(4.9) and (4.11). Therefore, in analogy to Eqs. (4.16) we find

ν2 > 1/κ
2
3 : w3 ' c3

√
πκ3

2R
e−R/κ3 , ū3 '

mg
ν2−1/κ2

3

w3

3R
. (4.18)

We need to verify that it was correct to neglect w̃8 and ū2: since κ3 > κ̃8, see Eq. (4.5), the case
ν2 > 1/κ2

3 allows for the two cases ν2 > 1/κ̃2
8 > 1/κ2

3 and 1/κ̃2
8 > ν2 > 1/κ2

3 . In the first case,
w̃8, ū2 ∝ e−R/κ̃8 , see Eq. (4.16), while in the second case w̃8, ū2 ∝ e−

√
ν2R, see Eq. (4.17). In both

cases, these contributions are suppressed stronger than w3, ū3 from Eq. (4.18) and it thus was
correct to neglect w̃8 and ū2. Next, we consider the case ν2 < 1/κ2

3 . This implies ν2 < 1/κ2
3 < 1/κ̃2

8 ,
and thus Eq. (4.17) shows that w̃8, ū2 are of the same leading order as w3, ū3, and we find

ν2 < 1/κ
2
3 : w3 '

mg
1/κ2

3 −ν2

ū2 +2ū3

3λR
, ū3 ' d3

√
π

2
√

ν2R
e−
√

ν2R . (4.19)

We can now undo the rotation of the scalar fields to compute ui for the various cases. We find that,
since ū1 contributes to all scalar fields, the leading asymptotic behavior in the case m 6= 0 for all
ui is the power law (4.15). This result, together with the behavior of the gauge fields from (4.16)
– (4.19) is summarized in the second column of Table 1. In this table, we have also indicated
the behavior of the free energy. From Eq. (3.5) we see that the terms proportional to f 2

i N2
i give

a divergent contribution if Ni(∞) = m/3 is nonzero. This divergence is logarithmic, expressed in
Table 1 in terms of an arbitrary scale R0. In realistic systems, this divergence is cut off by the
boundary of the system or by the presence of other vortices.

5. Type-I/type-II transition

From now on we shall restrict ourselves to pure magnetic flux tubes, m = 0, in order to discuss
the unconventional type-I/type-II behavior of CFL due to its multi-component structure. This is
most conveniently done by placing CFL into an external magnetic field H. Here and in the follow-
ing H always refers to an ordinary magnetic field (not a color-magnetic field) because eventually
we have in mind applications to neutron stars. We shall discuss the critical magnetic fields Hc,
Hc1, Hc2. Here, Hc is the critical magnetic field at which the homogeneous CFL phase, with B̃8

completely expelled, has the same Gibbs free energy as a homogeneous phase that admits penetra-
tion of B̃8, completely or partially. This phase, which supersedes CFL as we go up in H, is either
the completely unpaired phase ("NOR") or the partially paired 2SC phase (which then, in turn, is
superseded by the NOR phase at some larger critical magnetic field). One can show that as the
external field H is increased and if only homogeneous phases are considered, there is a transition
from CFL to the normal phase for values of the strong coupling constant smaller than the critical
value g2

c = 8e2(1+η)/[3(1− 8η)], and to 2SC for larger values of g; see Ref. [7] for the corre-
sponding phase diagram. In other words, at g = gc there is a magnetic field H at which all three
phases have the same Gibbs free energy. We see that for 1/8 < η < 1/2 no real value of gc exist,

7
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which means that in this regime there is a direct transition to the normal phase for all g. With the
weak-coupling result η =−1/2, we have gc ' 0.16.

Next, Hc2 is the upper critical magnetic field of the CFL flux tube phase, assuming a second
order transition to either the NOR or the 2SC phase. We are particularly interested in the point
Hc = Hc2 because in an ordinary superconductor this is the point where the behavior changes from
type-I to type-II. For small g, where we need to compute Hc2 for the transition between CFL and
NOR, Hc = Hc2 turns out to occur at

√
2ν1 = 1/κ̃8. For the transition between CFL and 2SC,

relevant for large g, we find that Hc = Hc2 is equivalent to
√

ν1ν2
√

g2 + e2/3/(
√

2g) = 1/κ̃8.
On the other hand, we can compute the point at which the long-range interaction between the

flux tubes changes from repulsive to attractive. In an ordinary single-component superconductor,
this point is identical to the point Hc = Hc2. This calculation relies on the CFL flux tubes only and
is thus independent of whether the phase at larger H is the NOR phase or the 2SC phase. We find
that the sign of the flux tube interaction changes at min(

√
ν1,
√

ν2) = 1/κ̃8 for vanishing B3 field
and min(

√
ν1,
√

ν2) = 1/κ3 if B3 is nonzero. Neither of these critical values coincides with the
point Hc = Hc2.

Finally, we compute Hc1, the magnetic field at which it becomes favorable to place a single
flux tube into the system. This critical field is computed numerically from the free energy of the
flux tube,

Hc1 =
1

Φ̃8 sinθ

F	
L

. (5.1)

While for an ordinary superconductor there is a point where Hc = Hc1 = Hc2, we find that in CFL
no such point exists. In a more complete calculation, taking into account the full flux tube lattice
and not just single flux tubes and their long-range interactions, first order transitions, say H ′c1 and
H ′c2, might occur, restoring this point in the form Hc = H ′c1 = H ′c2 [14, 19].

In Fig. 1 we show two phase diagrams in the plane of external magnetic field H and Tc/µq for
two different values of the strong coupling constant. Both diagrams make use of the weak-coupling
parameters (2.7). From perturbative QCD we know that Tc/µq only depends on g (not explicitly on
µq) and is exponentially suppressed. Therefore, if g is sufficiently small, the actual value of Tc/µq

is basically zero on the linear scale of Fig. 1, and CFL is a type-I superconductor, independent of
the above subtleties. At large coupling we can no longer trust the perturbative calculation, and due
to our lack of knowledge of Tc it makes sense to allow Tc/µq to vary freely, and independently of
g. Extrapolating the weak-coupling result beyond its regime of validity one obtains Tc/µq ' 0.01
for g = 3.5, which is in the type-I region, but not far from the onset of type-II behavior. Model
calculations suggest somewhat larger values of Tc, such that type-II behavior under neutron star
conditions is conceivable and possibly even the subtleties of the type-I/type-II transition become
relevant. In Fig. 1 the critical field Hc1 is shown only for the energetically most preferred flux tubes.
In the next section we present a more systematic calculation, considering all possible combinations
of winding numbers (under the constraint m = 0).

6. Multi-winding flux tubes

In an ordinary, single-component, type-II superconductor, the free energy of a flux tube per
magnetic flux is usually lowest for winding number one and increases monotonically with the wind-
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Figure 1: Critical magnetic fields as a function of Tc/µq for g = 0.1 (left panel) and g = 3.5 (right panel).
In the left panel, the critical magnetic field Hc1 is shown for the two most preferred windings (n1,n2,n3) =

(1,1,−2) and (1,0,−1), the cross indicating the point where these two critical fields intercept. The dashed
line is the segment of Hc1 where the flux tubes attract each other at large distances, such that a first-order
transition at a lower magnetic field can be expected to replace the dashed line. The right panel includes
the critical fields of the 2SC/NOR transition, in particular Hc1 for an ordinary flux tube "S1" and a domain
wall "D", not discussed in these proceedings. In the right panel, (n1,n2,n3) = (1,0,−1) is the preferred
configuration in the entire type-II regime.

ing number. In contrast, in a type-I superconductor flux tubes are disfavored, which is reflected in
a decreasing free energy per magnetic flux with winding number. At the critical point where type-I
behavior turns into type-II behavior the free energy per magnetic flux as a function of the winding
is flat. In neither regime there is a point at which there is an energetic minimum at a winding dif-
ferent from one and infinity. This standard situation is already changed by the presence of a second
component, even if this component is uncharged, as long as it couples to the superconducting com-
ponent. Nontrivial behavior as a function of the winding number in this case was pointed out in
Ref. [12]. In CFL we not only have three components, but also all three components are charged.
Therefore, a priori we have to deal with three winding numbers. To this end, we first define a total
winding number by

N ≡ |n1|+ |n2|+ |n3| . (6.1)

Then, we compute the profiles and free energies for all flux tubes with total winding smaller or
equal to some total winding N0, which do not carry baryon circulation and which do carry Φ̃8 flux.
Our constraints thus are m= 0, n1+n2−2n3 6= 0, N ≤N0. In particular, this collection of flux tubes
includes configurations with and without Φ3 flux, i.e., we make no assumption about n1− n2. In
Fig. 2, we have chosen N0 = 14, which leads to 40 configurations, modulo equivalent configurations
obtained by (n1,n2,n3)→ (−n1,−n2,−n3) and (n1,n2,n3)→ (n2,n1,n3). The resulting 40 critical
magnetic fields Hc1 are shown in the left panels, for the same two values of the coupling g as in Fig.
1, and two particular choices of Tc/µq. For each of the 7 different N ≤ 14, there is one energetically
preferred configuration. In the right panels, Hc1 as a function of Tc/µq for these 7 configurations is
plotted. The main observations from Fig. 2 are as follows.
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Figure 2: Left panels: critical field Hc1 for all flux tube configurations with zero baryon circulation and total
winding N ≤ 14 for g = 0.1 and Tc/µq ' 0.009 (upper left panel) and g = 3.5 and Tc/µq ' 0.086 (lower left
panel). The values for Tc/µq correspond to the points where the long-range interaction between flux tubes
turns from repulsive to attractive, see Fig. 1. We indicate negative winding numbers by a bar, for instance
101̄ means (n1,n2,n3) = (1,0,−1). Right panels: critical fields Hc1 for the most preferred configurations
for a given N – marked in red in the left panels – as a function of Tc/µq, for the same values of g. The Tc/µq

range is chosen such that the value at the right end of the range is the one used in the left panels. We have
also plotted the critical fields Hc and Hc2, indicating transitions to the unpaired phase (upper panel) and the
2SC phase (lower panel); in a single-component superconductor all lines would intersect in the same point.

• The gross behavior is as expected: in the type-II regime higher total windings N tend to
have larger Hc1. In particular, in both left panels of the figure we see that Hc1 increases
monotonically with N if for each N we consider the most preferred configuration, except for
the configuration 112̄, which, at weak coupling, is preferred over 101̄ in a certain regime of
Tc/µq, as we already know from Fig. 1.

• For weak coupling, the preferred flux tubes for each total winding are 101̄, 112̄, 213̄, 224̄
etc, i.e., they are of the form xyk̄ with k = N/2 and x = y for even k and x = y+ 1 for odd
k. For strong coupling they are 101̄, 202̄, 303̄, 404̄ etc, i.e., they are of the form k0k̄. This
difference is easy to understand: following the former sequence we create a giant flux tube
with a completely unpaired core, while the second sequence leads to a giant flux tube with a
2SC core, anticipating the next phase up in H in each case.
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Figure 3: Critical magnetic fields Hc1 for g = 0.1 and Tc/µq = 0.004 as a function of the total winding
number N. Left panel: each connected set of points corresponds to one class of winding number triplets,
namely xyk̄ with y = 0,1, . . . ,6 from top to bottom and k = N/2, x = k−y. Right panel: Zoom-in to the most
preferred configurations, which are marked in red in the left panel. The non-monotonicity with N makes 336̄
the favored configuration.

• As already pointed out in Ref. [7], the most relevant configuration for neutron stars appears
to be 101̄ since it corresponds to the lowest point in the lower left panel. The configuration
112̄ [9], although favored for small coupling and although being the only pure flux tube
configuration discussed in the literature previous to Ref. [7], is, at strong coupling, even
disfavored compared to all flux tubes of the form k0k̄ shown in the lower left panel.

• In a single-component superconductor, the multi-winding curves of the right panels would
all intersect in a single point with each other and with Hc and Hc2. We see that the degree
of deviation from this standard scenario is different in the two cases shown here. For large
coupling, the deviation is small, and the configuration 101̄ is always preferred in the type-II
regime. For weak coupling, the unconventional behavior is particularly obvious, and multi-
winding solutions become strong contenders as we approach the type-I/type-II transition
region.

To further illuminate the unconventional behavior in the weak-coupling case, we show the
critical fields for g = 0.1 and Tc/µq = 0.004 in Fig. 3. This figure, in particular the right panel,
requires a good accuracy of the numerics. We have checked that in our relaxation code the points
of this panel do not change visibly when we further increase the iteration steps or the number of
grid points. As a result, we see that for the given value of Tc/µq the multi-winding flux tube 336̄
is the preferred configuration. This observation is very interesting, but should be taken with some
care for the following reasons. Firstly, in the entire type-II regime shown in Figs. 2 and 3, the
long-range attractiveness of the flux tubes suggests a first-order phase transition at a lower critical
magnetic field than obtained from the single-flux tube free energy (5.1). Therefore, the critical
fields Hc1 shown in these figures are not expected to be the actual phase transition lines from a more
complete calculation of the phase diagram. Nevertheless, the fact that a multi-winding flux tube has
the lowest free energy per magnetic flux in a certain (small) regime suggests that this configuration
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should be taken into account in such a more complete calculation or in a non-equilibrium situation
that allows for metastable states. Secondly, as mentioned above, at g = 0.1, the ratio Tc/µq is most
likely much smaller than the value chosen in Fig. 3. Therefore, for QCD this particular result does
not appear to be relevant. However, it is not excluded that there is a regime, between the two values
g = 0.1 and g = 3.5, where the coupling is sufficiently small to favor multi-winding solutions and
at the same time the critical temperature is sufficiently large to enable type-II behavior. Whether
such regime exists is an interesting question that we leave for future studies.
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