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Gravitational waves and collider signatures from holographic phase transitions Eugenio Megías

1. Introduction

The Standard Model (SM) of particle physics fails to explain a number of observational and theo-
retical issues, such as the baryon asymmetry of the universe, the origin of inflation and the strong
sensitivity to high scale physics. The latter problem is commonly known as the hierarchy problem,
and has motivated the study of several Beyond the SM (BSM) scenarios. One of the most fruitful
BSM frameworks is the Randall-Sundrum model [1]. In this scenario the hierarchy between the
Planck and the ElectroWeak (EW) scale is generated by a warped extra dimension in Anti de Sitter
(AdS) space. This model contains a light state, the radion, which is dual to the dilaton, a Goldstone
boson of the conformal invariance of the dual four-dimensional (4D) theory, and it is typically the
lightest BSM state. The radion undergoes a ’holographic’ first order phase transition during which
it acquires a vacuum expectation value [2, 3]. Models with small back-reaction on the gravitational
metric suffer from perturbativity problems of the five-dimensional (5D) gravitational theory. In the
present work we will introduce a method to deal with large back-reaction issues, that generalizes
the superpotential procedure. For concreteness we will focus on a class of theories where the con-
formal symmetry is strongly broken in the infrared (IR). This kind of models were also considered
to study EW precision data [4, 5], and most recently the B-meson anomalies [6, 7, 8].

2. The radion effective potential

In this section we present the model, and develop a novel method to employ the superpotential
formalism to compute the effective potential at zero and finite temperature without major problems
with the back-reaction. We consider a scalar-gravity system with two branes at values r = r0 (UV
brane), and r = r1 (IR brane). The 5D action of the model reads

S =

∫
d5x

√
| detgMN |

[
−

1
2κ2 R +

1
2
gMN (∂Mφ)(∂Nφ)−V (φ)

]

−
∑
α

∫
Bα

d4x
√
| det ḡµν |Λα (φ)−

1
κ2

∑
α

∫
Bα

d4x
√
| det ḡµν |Kα . (2.1)

There are three kind of contributions to the action corresponding to the bulk, the brane and the
Gibbons-Hawking-York contribution. V (φ) is the bulk potential, Λα (φ) (α = 0,1) are the UV and
IR 4D brane potentials at (φ(r0),φ(r1)), and κ2 = 1/(2M3) with M being the 5D Planck scale. The
metric is defined in proper coordinates as ds2 = ḡµνdxµdxν − dr2 with ḡµν = e−2A(r )ηµν the 4D
induced metric on the branes. In order to solve the hierarchy problem, the brane dynamics should
fix (φ0,φ1) to get A(φ1)− A(φ0) ≈ 35, and this implies MPlanck ' 1015MTeV. We have introduced a
superpotential, whose relation with the scalar potential is V (φ) = 1

8W ′(φ)2− κ2

6 W 2(φ).

2.1 The effective potential

By using the equations of motion of the model, the action (2.1) can be written as [9]

S = −

∫
d4x Veff , where Veff =

[
e−4A (W +Λ1)

]
r1

+
[
e−4A (−W +Λ0)

]
r0
. (2.2)

After fixing r0 = 0, the variable r1 turns out to be the brane distance. The equation of the super-
potential is a first order differential equation, so that it admits an integration constant that we will
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Figure 1: Left panel: Effective potential for different values of λ1 in units of `. Right panel: ah (T ) (blue
solid line) and κ2 |Fmin |/(π4`3T4) (red dashed line) as a function of T . We rescale the brane tensions as λα =
`κ2

6 Λα . In both panels we have considered the ’large back-reaction scenario B’.

denote by s. If W0 is a particular solution of the equation of motion with potential V , then it is
possible to find a general solution of the equation as an expansion of the form W =

∑∞
n=0 snWn ,

where Wn can be computed iteratively from W0. An explicit solution for n = 1 is given by [10, 11]

W1(φ) =
1
`κ2 exp*

,

4κ2

3

∫ φ

v0

W0(φ̄)
W ′

0(φ̄)
dφ̄+

-
, (2.3)

where ` is the AdS radius. We can similarly expand the scalar field as φ(r) = φ0(r) + sφ1(r) +

O(s2). The integration constant, s, is fixed by the boundary condition φ(r1) = v1, leading to s(r1) =

(v1 − φ0(r1))/φ1(r1). Therefore the superpotential acquires an explicit dependence on the brane
distance, W (vα ) = W0(vα ) + s(r1)W1(vα ) + · · · , which in turn creates a non-trivial dependence on
r1 of the effective potential of Eq. (2.2). We will use this formalism for a kind of soft-wall phe-
nomenological models defined by the superpotential W0(φ) = 6

`κ2

(
1 + eγφ

)
and concentrate in sev-

eral benchmark scenarios, covering parameter configurations with large and small back-reactions
on the metric. In particular: i) Scenario A (small back-reaction), κ2 = 1

4`
3; ii) Scenario B (large

back-reaction), κ2 = 1
4`

3; and iii) Scenario C (large back-reaction), κ2 = `3 (cf. Ref. [9] for details).
Table 1 shows the radion mass obtained in each scenario by using the approximate mass formula
of Ref. [5]. Using this technique we find, for scenario B, the effective potential of Fig. 1 (left).

Scen. λ1 mrad/GeV Tc/GeV Tn/GeV TR/GeV α log10(β/H?)
A -1.250 199.8 230 - - - -
B1 -2.583 915 633 328 821.8 4.61 1.99
B2 -2.125 745 463 26 566.4 4.0 ·104 1.23
C -3.462 477 252 112 133.7 5.0 1.05

Table 1: List of benchmark scenarios considered in this work. The outputs obtained in each scenario are
presented from the third column on. The foreground red [blue] color on the value of λ1 indicates that the
corresponding phase transition is driven by O(3) [O(4)] symmetric bounce solutions, cf. Sec. 3.1.

2



P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
2
0
1
8
)
2
2
7

Gravitational waves and collider signatures from holographic phase transitions Eugenio Megías

2.2 The effective potential at finite temperature

In the AdS/CFT correspondence a black hole (BH) solution describes the high temperature phase
where the dilaton is in the symmetric phase, i.e. 〈µ〉 = 0. 1 Let us consider the BH metric

ds2
BH = −h(r)−1dr2 + e−2A(r ) (h(r)dt2− d~x 2) , (2.4)

where the blackening factor vanishes at the event horizon, i.e. h(rh ) = 0. The equations of motion
of the system reduce to three independent equations with five integration constants, which can be
fixed by imposing boundary conditions at the UV brane, r = 0, and regularity conditions at the
horizon, r = rh . Then, the temperature and entropy of the BH can be expressed as

Th =
1

4π
e−A(rh ) ��h′(r)��r=rh

, S =
4π
κ2 e−3A(rh ) ≡

4π4`3

κ2 ah (Th )T3
h , (2.5)

where ah (T ) is a smooth function which measures the deviation from the conformal limit, being
ah = 1 the conformal solution. Finally, the free energy of the system has a minimum at Th = T ,
which can be approximated by Fmin(T ) ' −π

4`3

κ2 ah (T )T4. The numerical result of this procedure
within scenario B is shown in Fig. 1 (right). For small back-reaction ah (T ) basically reproduces
the case of pure AdS (ah = 1), whereas for large back-reaction the value is ah (T ) � 1. This effect
strongly influences the nucleation temperature of the phase transition. We find from our numerics
that the behavior of ah (T ) is generic and only depends on the amount of back-reaction.

3. The phase transition

In this section we study the phase transition mechanism of the radion as well as its implications for
the EW phase transition.

3.1 The dilaton phase transition

When considering the system at finite temperature, there are two competing phases: the BH decon-
fined phase and the soft-wall confined phase, characterized by 〈µ〉 = 0 and 〈µ〉 , 0, respectively.
The free energies of these phases are

Fdeconfined(T ) = E0 + Fmin(T )−
π2

90
geff
d T4 , Fconfined(T ) = −

π2

90
geff
c T4 , (3.1)

where E0 ≡ Veff(µ = 0) −Veff(µ = 〈µ〉) > 0, while geff
c (d) are the effective degrees of freedom in

the confined (deconfined) phase. When the temperature is decreasing, the critical temperature
at which the phase transition starts being allowed is given by Fdeconfined(Tc ) = Fconfined(Tc ). The
phase transition happens when the barrier between the false BH minimum and the true vacuum
is overcome. While at high T this process is driven by thermal fluctuations and the corresponding
Euclidean action is O(3) symmetric, at low T the transition can occur via quantum fluctuations with
an O(4)-symmetric action. The corresponding equation of motion of the radion field is known as
the ‘bounce equation’ and, for the O(n) symmetric Euclidean action, it is written as [12] 2

∂2µ

∂ρ2 +
(n−1)
ρ

∂µ

∂ρ
−
∂Veff

∂µ
= 0 , with

1
2
µ′2(ρ)��µ=0 = |Fmin(T ) | . (3.2)

1We denote by µ(r) the canonically normalized radion field.
2In these expressions ρ =

√
~x2 for n = 3, and ρ =

√
~x2 + τ2 (with τ being the Euclidean time) for n = 4.
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Figure 2: Left panel: S4 and S3/T as a function of temperature (normalized to 〈µ〉). We have considered
scenario B1. Right panel: The TR − β/H? parameter space that exhibits SNR > 10 at SKA, LISA, aLIGO,
and ET [14, 15, 16, 17]. The Big Bang nucleosynthesis bound excludes the blue area. It is displayed as dots
the values obtained in several benchmark scenarios: B (blue points), C (green point) and other scenarios
discussed in Ref. [9]. The inserted figure is a zoom of the main one in the regime of the model prediction.

The bubble nucleation rate from the false BH minimum to the true vacuum per Hubble volumeV
is Γ/V ' e−SE ' e−S3/T + e−S4 , so that it is dominated by the least action. Nucleation happens
when the probability for a single bubble to be nucleated within one horizon volume is O(1), which
corresponds to SE . 4log (MPlanck/〈µ〉) ≈ 140 [13]. Fig. 2 (left) shows the numerical result in
a scenario with large back-reaction (B1). For large (small) values of |λ1 | the phase transition is
dominated by the O(3)(O(4)) bounce. When the back-reaction is small neither S4 nor S3/T reach
the upper bound. On the other hand, inflation starts when E0 dominates the value of the energy
density, i.e. ρdeconfined(Ti ) ' E0, and it finishes when bubbles percolate at T ' Tn . Finally, one can
assume that during the phase transition the energy density is approximately conserved, so that at
the end of the transition the universe ends up in the confined phase at the reheating temperature TR

given by ρconfined(TR) = ρdeconfined(Tn ). In Table 1 we summarize the values of these observables.

3.2 The electroweak phase transition

When T decreases and the BH moves beyond the IR brane, the Higgs field H , localized nearby the
IR brane, appears. Then the effective potential becomes a function of the radion and the Higgs [3]:

V (µ,H) = Veff(µ) +

(
µ

〈µ〉

)4

VSM(H,T ) , with VSM(H,T ) = −
1
2

m2H2 +
λ

4
H4 +∆VSM(H,T ) .

(3.3)
Here the Higgs mass is m2

H = 2λv2 ' (125GeV)2 with v = 246GeV, and ∆VSM(H,T ) contains loop
corrections. VSM(H,T ) has its absolute minimum at 〈H (T )〉= v(T ) which, at leading approximation
for the thermal corrections, turns out to be

v(T ) =




0 for T > TEW

v
√

1−T2/T2
EW for T ≤ TEW

(3.4)

4
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with TEW ' 150GeV. The relevant quantity to study, when the universe ends up in the EW broken
phase after the bubble percolation, is the reheating temperature. In scenarios with TR > TEW, at
the end of the reheating process the Higgs field is in its symmetric phase, and the EW symmetry
breaking would occur as in the SM, i.e. via a crossover that prevents the phenomenon of EW
baryogenesis. Only in situations with TR < TEW the reheating does not restore the EW symmetry,
and the Higgs lies at the minimum v(TR). In the presence of a SM-like low energy particle content,
the condition for EW baryogenesis v(TR)/TR & 1 is fulfilled when TR satisfies the bound TR .

TH ' 140GeV [3, 18], otherwise the EW phase transition is too weak. A parameter configuration
leading to TR < TH < TEW is provided by scenario C, in which the EW and dilaton phase transitions
happen simultaneously at T = Tn = 112GeV, and end up with T = TR = 133.7GeV, cf. Table 1.

4. Gravitational waves

During a cosmological first order phase transition, a stochastic gravitational wave (GW) back-
ground is generated. The corresponding GW spectrum depends on several quantities that charac-
terize the phase transition. Within the envelope approximation, the frequency power spectrum of
the stochastic GW background is given by [19]

h2
ΩGW( f ) ' h2

ΩGW
3.8( f / f p )2.8

1 + 2.8( f / f p )3.8 , with h2
ΩGW ∝

(
H?

β

α

α+ 1

)2

, (4.1)

where H? is the Hubble parameter at the time t? when the bulk of the GW production starts. There
are two parameters, α and β, that control the behavior of the spectrum. The parameter α is related
to the latent heat of the phase transition, while β ≡ −dS/dt |t=t? is a measurement of the time
duration of the phase transition. These two quantities can be computed as

α '
E0

3(π4`3/κ2)ah (Tn )T4
n

, and
β

H?
' Tn

dSE
dT

�����T=Tn

, (4.2)

where it has been assumed that T? ≈ Tn . A relevant quantity that measures the capability of an
experiment to detect GWs is the Signal-to-Noise Ratio (SNR). It is proportional to SNR ∝

√
T ,

where T is the time period collecting data, and it depends on the sensitivity curve of the experiment
in frequency space. Fig. 2 (right) shows the parameter region in the plane TR − β/H? that exhibits
SNR > 10 for different experiments over the next ∼ 20 years. Note that in a wide fraction of this
parameter space, at least two experiments will be able to detect independently the signals [20]. The
results obtained with the benchmark scenarios of the model presented in Secs. 2 and 3 are displayed
as dots, and they turn out to be detectable at both LISA and Einstein Telescope (ET) experiments.

5. Heavy radion phenomenology

Finally, we study the detection prospects for the radion in collider phenomenology at the LHC.
In our particle setup, when the radion is lighter than any KK resonance and mrad ∼ O(TeV), it
can decay only into SM-like fields. Since the radion couples to the energy-momentum tensor, its
production/decay channels are those of the SM Higgs, but with different strengths. We assume that
the Higgs is exactly localized at the IR brane. Using the 4D action for the radion and SM fields,

5
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cγ cg cV cH cf
0.472 0.164 0.0649 0.259 0.259

BRWW BRZZ BRHH BR
t t̄

BR
bb̄

BRττ̄ BRγγ
0.271 0.135 1.26 ·10−3 0.592 1.83 ·10−4 2.85 ·10−5 8.55 ·10−6

SggF
WW SggF

ZZ SggF
ττ̄ SggF

γγ +SVBF
γγ SVBF

WW SVBF
ZZ SVBF

ττ̄

(predic.) 1.59 0.80 1.7 ·10−4 5.5 ·10−5 0.16 0.080 1.7 ·10−5

(bound) 52 14 11 0.29 12 8 –

Table 2: Coupling coefficients of the radion interactions with the SM fields, radion branching fractions, and
the predictions of SggF (VBF )

XX and their corresponding 95% C.L. upper bounds (in fb units). The bounds are
taken from the ATLAS searches, see e.g. Ref. [21]. We have considered the scenario B1, cf. Table 1.

one can compute the couplings of the radion to the massless gauge bosons (photons and gluons),
massive gauge bosons (W± and Z0), fermions and the Higgs boson. As an example, the coupling to
fermions looks like Lr f̄ f = −

R (x)
v cf m f f̄ f , where cf is a coefficient which measures the departure

of the f̄ f coupling from its value for a hypothetical SM Higgs H with mH = mrad, cf. Ref. [9] for
full details. We show in Table 2 the numerical values of the coupling coefficients.

The main production mechanisms of the heavy radion at the LHC are gluon fusion (ggF) and
vector-boson fusion (VBF). Noting that the production cross-sectionsσR (gg(VV )→R) ∝ |cg(V ) |

2,
and the decay widths of the radion into SM particles Γ(R → X X̄ ) ∝ |cX |2, we can compute these
quantities from their relations to the heavy SM Higgs predictions, thus leading to the cross sections

SggF(VBF)
XX ≡ σggF(VBF) (pp→R → X X̄ ) ' σggF(VBF)

R
(gg(VV )→R) · B RXX (R → X X̄ ) , (5.1)

where B RXX are the radion branching fractions with X = γ,W,Z, f ,H . We summarize in Table 2
the results in the benchmark scenario B1. We conclude that this scenario is in full agreement with
the current bounds at the LHC. The same conclusion is obtained when studying other scenarios,
cf. Ref. [9]. In particular, scenario C has channels Z Z and WW that are not far below the exper-
imental constraints, so that future LHC data will be able to probe some of these decay channels.
This will probably happen in conjunction with the LISA and ET measurements.

6. Conclusions

In the context of 5D warped models, we have introduced a novel technique to compute the effective
potential of the radion based on a suitable perturbative expansion of the general solution of the
equations of motion for the superpotential. This method can be applied to any warped model, even
in situations with a strong back-reaction over the metric. From the computation of the effective
potential at finite temperature using a black hole solution, we have been able to study the dilaton
phase transition, and obtain that the confinement/deconfinement phase transition demands a sizable
large back-reaction. We have also identified some scenarios in which the EW symmetry breaking
happens at the same time that the dilaton phase transition, and EW baryogenesis is still possible.
The model predicts the production of gravitational waves in a regime detectable either by LISA
and the Einstein Telescope. Finally, we have found that the current LHC bounds are not in tension
with the (rather heavy) radion predicted by the model.

6
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