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nature of the latter quark–antiquark bound states is taken into account by appropriately formulated
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1. Interpretation of the Lightest Pseudoscalar Mesons as (Pseudo) Goldstone Bosons

Spontaneous breakdown of the chiral symmetries of quantum chromodynamics (QCD) implies
the presence of massless bosons, identified with the ground-state pseudoscalar mesons, with masses
due to these symmetries’ further, explicit breaking. As a proof of concept, we study the treatment of
such pseudo-Goldstone bosons by a simple approximation [1–5] to the Bethe–Salpeter equation [6].

2. Bethe–Salpeter Equation for Fermion–Antifermion States in Instantaneous Limit

Consider some boson bound state|B(P)〉 of massM̂B and momentumP, composed of a fermion
and an antifermion with individual coordinatesx1,2, individual momentap1,2, center-of-momentum
coordinateX, relative coordinatex, total momentumP, and relative momentump, clearly related by

x≡ x1−x2 , P≡ p1+ p2 , P2 = M̂2
B .

The Bethe–Salpeter formalism describes the bound state|B(P)〉 by its Bethe–Salpeter amplitude, in
momentum space defined, in terms of the Dirac field operatorsψ1,2(x1,2) of the two constituents, by

Φ(p,P)≡ exp(i PX)
∫

d4x exp(i px)〈0|T(ψ1(x1) ψ̄2(x2))|B(P)〉 .

This Bethe–Salpeter amplitude satisfies the homogeneous Bethe–Salpeter equation [6] that, in turn,
involves both the appropriate interaction kernel and the propagators of the bound-state constituents.
In Lorentz-covariant settings, the full propagatorSi(p) of any spin-12 fermioni can be represented in
terms of two Lorentz-scalar functions,e.g., massMi(p2) and wave-function renormalizationZi(p2),
obtained as solutions to the Dyson–Schwinger equation for the fermion’s two-point Green function:

Si(p) =
i Zi(p2)

/p−Mi(p2)+ i ε
, /p≡ pµ γµ , ε ↓ 0 , i = 1,2 . (2.1)

Some time ago, we devised a (Salpeter-equation-generalizing) three-dimensional reduction [1]
of the Poincaré-covariant Bethe–Salpeter equation, enabled by keeping in fermion propagators only
terms linear inp0. The latter, together with the assumption of instantaneityof all interactions among
the bound-state constituents, suffices to formulate bound-state equations for Salpeter amplitudes [7]

φ(ppp) ∝
∫

dp0 Φ(p,P) .

In terms of its bound-state constituents’ free energies andprojectors onto positive/negative energies,

Ei(ppp)≡
√

ppp2+M2
i (ppp

2) , Λ±
i (ppp)≡

Ei(ppp)± γ0 [γγγ · ppp+Mi(ppp2)]

2Ei(ppp)
,

and induced interaction kernelK(ppp,qqq), our center-of-momentum-frame bound-state equation reads

φ(ppp) = Z1(ppp
2)Z2(ppp

2)

∫
d3q
(2π)3

(
Λ+

1 (ppp)γ0 [K(ppp,qqq)φ(qqq)]Λ−
2 (ppp)γ0

M̂B−E1(ppp)−E2(ppp)

− Λ−
1 (ppp)γ0 [K(ppp,qqq)φ(qqq)]Λ+

2 (ppp)γ0

M̂B+E1(ppp)+E2(ppp)

)
. (2.2)

The normalization of the Salpeter amplitudeφ(ppp)will, of course, reflect that of the state|B(P)〉
entering its definition. For the latter normalization, we adhere to the relativistically covariant choice

〈B(P)|B(P′)〉= (2π)3 2P0δ (3)(PPP−PPP′) .

1



P
o
S
(
C
o
n
f
i
n
e
m
e
n
t
2
0
1
8
)
2
5
1

Bethe–Salpeter-Motivated Modelling of Pseudo-GoldstonePseudoscalar Mesons Wolfgang Lucha

Neglecting, for one reason or the other, the impact of the interaction kernel, this yields the condition
(involving a trace over our bound-state constituents’ spinor, flavour, and colour degrees of freedom)

∫
d3pTr

[
φ†(ppp)

γ0 [γγγ · ppp+M1(ppp2)]

E1(ppp)
φ(ppp)

]
= (2π)3 2P0 .

3. Application Suggesting Itself: Two Bound-State Constituents of Identical Flavour

Now, let us adapt our general instantaneous Bethe–Salpeterformalism [1] to just those physical
systems we are actually interested in: bound states of a quark and an antiquark of precisely the same
mass — tantamount, as far as only the strong interactions aretaken into account, to bound states of a
quark and its own antiquark. For this special case, we may drop the flavour-related subscripti = 1,2
in our framework, whence the instantaneous Bethe–Salpeterequation (2.2) simplifies (a little bit) to

φ(ppp) = Z2(ppp2)

∫
d3q
(2π)3

(
Λ+(ppp)γ0 [K(ppp,qqq)φ(qqq)]Λ−(ppp)γ0

M̂B−2E(ppp)

− Λ−(ppp)γ0 [K(ppp,qqq)φ(qqq)]Λ+(ppp)γ0

M̂B+2E(ppp)

)
. (3.1)

Clearly, the spin–parity–charge-conjugation assignmentof any pseudoscalar bound state formed by
spin-12 fermion and spin-12 antifermion is given byJPC= 0−+. The most general Salpeter amplitude
φ(ppp) of any such state may be expanded into only two independent Lorentz-scalar components, say,
ϕ1,2(ppp). Recalling its colour factor, for a bound state of quark and its antiquark this expansion reads

φ(ppp) =
1√
3

[
ϕ1(ppp)

γ0 [γγγ · ppp+M(ppp2)]

E(ppp)
+ϕ2(ppp)

]
γ5 ,

4
∫

d3p[ϕ∗
1(ppp)ϕ2(ppp)+ϕ∗

2(ppp)ϕ1(ppp)] = (2π)3 2P0 .

At that stage, the only element still lacking is the Bethe–Salpeter kernelK(ppp,qqq), with regard to
its Dirac structure and its dependence on the momentappp andqqq. We tackle this problem in two steps.

3.1 Dirac Structure of the Bethe–Salpeter Interaction Kernel by Sticking to Fierz Invariance

We base the determination of the kernelK(ppp,qqq) on our trust in Fierz symmetries and rely for its
Dirac structure on a linear combination corresponding to aneigenstate under Fierz transformations:

K(ppp,qqq)φ(qqq) ∝ V(ppp,qqq)
[
γµ φ(qqq)γµ + γ5φ(qqq)γ5−φ(qqq)

]
. (3.2)

Accordingly, all underlying effective interactions are subsumed by a single Lorentz-scalar potential
function,V(ppp,qqq). Assuming the latter to be of convolution type and to be compatible with spherical
symmetry, that is,V(ppp,qqq)=V((ppp−qqq)2), allows us to split off all reference to angular variables and
to reduce our bound-state equation (3.1) to a system of equations for the radial factorsϕ1,2(p) of the
independent componentsϕ1,2(ppp), depending on the modulip≡ |ppp|,q≡ |qqq| of the momentapppandqqq,
with all interactions encoded by a yet to be found configuration-space central potentialV(r), r ≡ |xxx|:

E(p)ϕ2(p)+
2Z2(p2)

π p

∞∫

0

dqqdr sin(pr)sin(qr)V(r)ϕ2(q) =
M̂B

2
ϕ1(p) , (3.3a)

E(p)ϕ1(p) =
M̂B

2
ϕ2(p) . (3.3b)
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3.2 Momentum Dependence of our Bethe–Salpeter InteractionKernel by Utilizing Inversion

The two (in general, coupled) Eqs. (3.3) constitute an eigenvalue problem, with the bound-state
masseŝMB as eigenvalues, for bound states specified, in momentum-space representation, by the set
of radial wave functionsϕ1,2(p). Forvanishingeigenvalue, that is, for̂MB = 0, Eqs. (3.3) decouple:
Eq. (3.3b) forcesϕ1(p) to vanish,i.e., ϕ1(ppp)= 0. Thus, the corresponding Salpeter amplitude reads

φ(ppp) =
1√
3

ϕ2(ppp)γ5 . (3.4)

In configuration-space representation, denoting the free term byT(r), Eq. (3.3a) then simplifies to a
relation enabling us [8,9] to find the potential in action,V(r), provided we know one solutionϕ2(r):

T(r)+V(r)ϕ2(r) = 0 =⇒ V(r) =− T(r)
ϕ2(r)

. (3.5)

In order to get hold of, at least, one of the desired solutions, we exploit the relationship between
the full quark propagatorS(p) — obtainable as solution to the quark Dyson–Schwinger equation —
and the Bethe–Salpeter amplitudeΦ(p,0) of (flavour-nonsinglet) pseudoscalar mesons arising from
the (renormalized) axial-vector Ward–Takahashi identityof QCD in the chiral limit [10]: the sought
relationship (in its Euclidean-space formulation indicated by underlined quantities) reads [2,11–14]

Φ(k,0) ∝
Z(k2)M(k2)

k2+M2(k2)
γ

5
+subleading contributions. (3.6)

Just for the sake of illustration, let us follow the path sketched above by starting from a solution
for the chiral-quark propagator found in Ref. [15] on the basis of a particular QCD-motivated ansatz
for theeffectiveinteractions entering in the quark Dyson–Schwinger equation: the conversion of the
propagator functionsM(k) andZ(k) redrawn in Fig. 1, by means of Eq. (3.6), to the massless-meson
Salpeter amplitude of Fig. 2 entails, via the inversion (3.5), the interquark potential plotted in Fig. 3.

4. Basic Pseudoscalar-Meson Features in a Gell-Mann–Oakes–Renner-type Relation

With the explicit behaviour of the effective interquark potentialV(r) at our disposal, we are in a
position to embark on the intended simplified description ofmeson properties: for̂MB 6= 0, inserting
any of Eqs. (3.3) into the other, takes us to a single eigenvalue equation for eigenvalueŝM2

B [2–5,17],
which can be easily solved by expanding its solutions over suitable bases in function space [18–25].

Matching residues of pseudoscalar-meson poles in the axial-vector Ward–Takahashi identity of
QCD gives a Gell-Mann–Oakes–Renner-resembling [26] relation [10] linking, besides meson mass
M̂B and two quark masses, bothdecay constant fB andin-hadron condensateCB of the pseudoscalar
bound state|B(P)〉, defined, in terms of quark fieldsψ f (x) (exhibiting the flavour indexf = 1,2), by

〈0|: ψ̄1(0)γµ γ5ψ2(0) :|B(P)〉= i fBPµ =⇒ fB ∝
∫

d3pTr[γ0 γ5 φ(ppp)] ,

〈0|: ψ̄1(0)γ5 ψ2(0) :|B(P)〉 ≡ CB ∝
∫

d3pTr[γ5 φ(ppp)] .

Sticking still to the idealized case of bound-state constituents of equal massm, this relation becomes

fBM̂2
B = 2mCB .

3
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Figure 1: Dependence, on the Euclidean momentumk, of both (a) mass functionM(k) and (b) wave-function
renormalization functionZ(k) entering in the quark propagator (2.1) in the chiral limit, extracted and redrawn
[2,4] from Fig. 1 of Ref. [16], emerging as solution to the Dyson–Schwinger equation for the quark two-point
Green function imitating the impact of truncated Dyson–Schwinger equations by QCD-inspired ansätze [15].
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Figure 2: Nonvanishing radial component function determining the Salpeter amplitude (3.4) of any massless
pseudoscalar quark–antiquark bound state governed by our instantaneous Bethe–Salpeter equation (3.1) with
Fierz-symmetricDirac structure (3.2), extracted from the quark propagatorfunctionsM(k) andZ(k) of Fig. 1,
shown in both (a) momentum-space representation,ϕ2(p), and (b) configuration-space representation,ϕ2(r).
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Figure 3: Spherically symmetric effective quark–antiquark interaction potentialV(r) that upon insertion into
our instantaneous Bethe–Salpeter equation (3.3) trimmed to describe pseudoscalar mesons reproduces, as the
ground-state solution to that bound-state problem, the (starting-point) Salpeter component depicted in Fig. 2.
Its near flatness close to the origin and steep rise to infinitymakeV(r) reminiscent of asmoothedsquare well.

Table 1 presents the very satisfactory outcomes of implementation of the potential of Fig. 3 into
our bound-state approach (see,e.g., Refs. [28–30] for corresponding recent Bethe–Salpeter results).

Table 1: Gell-Mann–Oakes–Renner-required features of pseudoscalar quark–antiquarkbound states (masses
M̂B, decay constantsfB and in-meson condensatesCB) predicted by Eqs. (3.3) for the potentialV(r) of Fig. 3,
and adequate quark massesmcompared with the current-quark valuesm(µ) in modified minimal subtraction.

Constituents M̂B fB CB m m(2 GeV)
[MeV] [MeV] [GeV2] [MeV] [MeV] [27]

chiral quarks 6.8 151 0.585 0.0059 —

u/d quarks 148.6 155 0.598 2.85 3.5+0.5
−0.2

squarks 620.7 211 0.799 51.0 95+9
−3
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