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To check the dual superconductor picture for the quark-confinement mechanism, we evalu-
ate monopole dominance as well as Abelian dominance of quark confinement for both quark-
antiquark (QQ̄) and three-quark (3Q) systems in SU(3) quenched lattice QCD in the maximally
Abelian (MA) gauge. First, we examine Abelian dominance for the static QQ̄ system in lat-
tice QCD with various spacing a at β = 5.8− 6.4 and various size L3 ×Lt . For large physical-
volume lattices with La ≥ 2fm, we find perfect Abelian dominance of the string tension for the
QQ̄ systems: σAbel ≃ σ . Second, we accurately measure the static 3Q potential for more than 300
different patterns of 3Q systems with 1000-2000 gauge configurations using two large physical-
volume lattices: (β ,L3 ×Lt)=(5.8, 163 ×32) and (6.0, 203 ×32). For all the distances, the static
3Q potential is found to be well described by the Y-Ansatz, i.e., two-body Coulomb term plus
three-body Y-type linear term σLmin, where Lmin is the minimum flux-tube length connecting the
three quarks. We find perfect Abelian dominance of the string tension also for the 3Q systems:
σAbel

3Q ≃ σ3Q ≃ σ . Finally, we accurately investigate monopole dominance in SU(3) lattice QCD
at β=5.8 on 163 ×32 with 2,000 gauge configurations. Abelian-projected QCD in the MA gauge
has not only the color-electric current jµ but also the color-magnetic monopole current kµ , which
topologically appears. By the Hodge decomposition, the Abelian-projected QCD system can be
divided into the monopole part (kµ ̸= 0, jµ = 0) and the photon part ( jµ ̸= 0, kµ = 0). We find
monopole dominance of the string tension for QQ̄ and 3Q systems: σMo ≃ 0.92σ . While the
photon part has almost no confining force, the monopole part almost keeps the confining force.
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1. Introduction: Dual Superconductor Picture and Maximally Abelian Gauge

Quantum chromodynamics (QCD) is the fundamental theory of the strong interaction, but the
QCD system is highly complicated and is still unsolved analytically because of its strong coupling
in the low-energy region. In particular, quark confinement is an outstanding strange phenomenon
exhibited in nonperturbative QCD, because the fundamental degrees of freedom, quarks and glu-
ons, cannot be observed, and there is almost no similar phenomenon in other region of physics. In
fact, to clarify the confinement mechanism is one of the most difficult important unsolved problems
remaining in modern physics.

For the quark-confinement mechanism, Nambu, ’t Hooft and Mandelstam proposed a dual-
superconductor picture in 1970’s [1]. In this picture, the QCD vacuum is regarded as a color-
magnetic monopole condensed system, and the dual Meissner effect forces the color-electric flux
between (anti)quarks to be squeezed into one dimension, which leads to the flux-tube picture of
hadrons [2, 3]. However, there are two large gaps between QCD and the dual-superconductor
picture [4].

1. The dual-superconductor picture is based on the Abelian gauge theory subject to the Maxwell-
type equations, but QCD is a non-Abelian gauge theory.

2. The dual-superconductor picture needs color-magnetic monopole condensation as the key
concept, but QCD does not have such a monopole as the elementary degrees of freedom.

As a possible connection from QCD to the dual superconductor picture, ’t Hooft proposed “Abelian
projection” [2, 3] as an infrared Abelianization scheme of QCD. In the Abelian projection, mag-
netic monopoles topologically appear, and ’t Hooft conjectured that long-distance physics like con-
finement is realized only by Abelian degrees of freedom in QCD [2], which is called “(infrared)
Abelian dominance”.

Actually, in the maximally Abelian (MA) gauge [5], off-diagonal gluons acquire a large effec-
tive mass of about 1GeV [6], which makes infrared QCD Abelian-like [7], and lattice QCD shows
appearance of a large clustering of the monopole current covering the four-dimensional space-time
[5, 8]. In fact, infrared QCD in the MA gauge seems to behave as an Abelian dual-superconductor.

In SU(3) lattice QCD, MA gauge fixing [9, 10] is performed by maximizing

RMA[Uµ(s)]≡ ∑
s

4

∑
µ=1

tr
(

U†
µ(s)H⃗Uµ(s)H⃗

)
=

1
2 ∑

s

4

∑
µ=1

(
3

∑
i=1

|Uµ(s)ii|2 −1

)
, (1.1)

under SU(3) gauge transformation. Here, Uµ(s) is the link-variable Uµ(s) = eiagAµ (s) ∈ SU(3)c
with lattice spacing a, gauge coupling g and gluon fields Aµ .

The Abelian link-variable uµ(s) = eiθµ (s) = eiθ 3
µ (s)T3+iθ 8

µ (s)T8 ∈ U(1)2 is extracted from the
link-variable UMA

µ (s) ∈ SU(3)c in the MA gauge [10], by maximizing the overlap of RAbel ≡
1
3 Retr

(
UMA

µ (s)u†
µ(s)

)
∈ [−1

2 ,1]. Maximally Abelian projection is defined by the replacement of

{UMA
µ (s)}→ {uµ(s)}, which corresponds to the elimination of off-diagonal gluon components.

In this paper, to check the dual superconductor picture, we accurately investigate Abelian
dominance [9, 10] and monopole dominance of the quark confining force for both quark-antiquark
(QQ̄) and three-quark (3Q) systems in SU(3) quenched lattice QCD in the MA gauge. For the error
estimate, we use the jackknife method.
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2. Perfect Abelian dominance of quark confinement in quark-antiquark systems

First, we study the static QQ̄ potential V (r) in lattice QCD with (β ,L3×Lt)= (6.4,324),(6.0,324)

and (5.8,163 ×32) [9, 10]. The QQ̄ potential V (r) is obtained with the Wilson loop Wr×t [Uµ ], and
its MA projection (Abelian part) VAbel(r) is similarly defined by the Abelian Wilson loop Wr×t [uµ ],

V (r) =− lim
t→∞

1
t

ln⟨Wr×t [Uµ ]⟩, VAbel(r) =− lim
t→∞

1
t

ln⟨Wr×t [uµ ]⟩. (2.1)

We show in Fig.1(a) the QQ̄ potential V (r) and its Abelian part VAbel(r). They are found to be
well reproduced by the Coulomb-plus-linear Ansatz, respectively:

V (r) =−A
r
+σr+C, VAbel(r) =−AAbel

r
+σAbel r+CAbel. (2.2)

Figure 1(b) shows the difference V (r)−VAbel(r) plotted with r at each lattice. As a remarkable fact
from Fig.1, we find perfect Abelian dominance of the string tension, σAbel ≃ σ , for the QQ̄ system.

Figure 1: (a) The lattice QCD result of the QQ̄ potential V (r) (black) and its Abelian part VAbel(r) (blue) for
(β ,L3Lt) = (5.8,16332) [10]. (b) V (r)−VAbel(r) for (β ,L3Lt) = (6.4,324),(6.0,324) and (5.8,16332) [9].
At each lattice, all the data can be well fit with the pure Coulomb form with σ = 0, which means σAbel ≃ σ .

We also examine the physical lattice-volume dependence of σAbel/σ in Fig.2, and find perfect
Abelian dominance (σAbel ≃ σ ), when the spatial size La is larger than about 2 fm.
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Figure 2: Physical spatial-size dependence of the ratio σAbel/σ [10]. Perfect Abelian dominance (σAbel ≃σ )
is found for larger lattices with La ≥ 2 fm.
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3. Quark Confinement in Baryons

Second, we accurately measure the static three-quark (3Q) potential V3Q [10] for more than
300 different patterns of 3Q systems with 1000-2000 gauge configurations in SU(3) lattice QCD
on large physical-volume lattices with La > 2fm: (β ,L3 ×Lt)=(5.8, 163 ×32) and (6.0, 203 ×32).

3.1 Accurate Measurement of Three-Quark Potential

Like the QQ̄ potential, the 3Q potential V3Q is obtained from the “3Q Wilson loop” W3Q (an
extension of the Wilson loop for gauge-invariant static 3Q systems) defined in Ref.[11]:

V3Q =− lim
t→∞

1
t

ln
⟨
W3Q

[
Uµ
]⟩
. (3.1)

We consider 101 and 211 different patterns of 3Q systems with 2000 and 1000 gauge configurations
at β=5.8 and 6.0, respectively. For the accurate calculation of the 3Q potential with finite t, we use
the gauge-invariant smearing method [11], which enhances the ground-state component in the 3Q
state in ⟨W3Q⟩.

As the result, all the lattice QCD data of the 3Q potential V3Q is found to be fairly well repro-
duced by the Y-Ansatz [10, 11], i.e., one-gluon-exchange Coulomb plus Y-type linear potential,

V3Q(r1,r2,r3) =−∑
i< j

A3Q

|ri − r j|
+σ3QLmin +C3Q =−A3Q

R
+σ3QLmin +C3Q, (3.2)

with σ3Q ≃ σ (QQ̄ string tension). Lmin is the minimal flux-tube length connecting the three quarks,
located at r1,r2 and r3. We here introduce a convenient variable 1/R ≡ ∑i< j 1/|ri − r j| [12]. The
Y-Ansatz (3.2) indicates the Y-shaped flux-tube formation in baryons, which is actually observed
in lattice QCD calculations on the action density in the presence of three static quarks [13].

3.2 Perfect Abelian dominance of quark confinement in baryons

Next, we examine Abelian dominance of quark confinement in the 3Q system. Like the QQ̄
case, the MA-projected 3Q potential V Abel

3Q (Abelian part) is defined by the Abelian 3Q Wilson loop
W3Q

[
uµ
]

in the MA gauge,

V Abel
3Q =− lim

t→∞

1
t

ln
⟨
W3Q

[
uµ
]⟩
. (3.3)

Figure 3(a) shows the 3Q potential V3Q and its Abelian part V Abel
3Q plotted against the total flux-

tube length Lmin in SU(3) lattice QCD at β=5.8 on 163 ×32 with 2,000 gauge configurations [10].
The Abelian part V Abel

3Q of the 3Q potential also takes the Y-Ansatz [10],

V Abel
3Q =−∑

i< j

AAbel
3Q

|ri − r j|
+σAbel

3Q Lmin +CAbel
3Q =−

AAbel
3Q

R
+σAbel

3Q Lmin +CAbel
3Q , (3.4)

with 1/R ≡ ∑i< j 1/|ri−r j|. At long distances, V3Q and V Abel
3Q are almost single-valued functions of

Lmin, although their multi-valued feature due to the R-dependence is more visible at short distances
on finer lattices at β = 6.0. From Fig.3(a), we find perfect Abelian dominance also for the 3Q
confinement force, i.e., σAbel

3Q ≃ σ3Q ≃ σ .
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Figure 3: (a) The 3Q potential V3Q (black) and its Abelian part V Abel
3Q (blue) plotted against Lmin in SU(3)

lattice QCD at β=5.8 on 163 ×32. We add the best-fit Y-Ansatz curve of the equilateral 3Q case for V3Q and
V Abel

3Q , respectively. (b) ∆V3Q ≡V3Q−V Abel
3Q plotted against R. ∆V3Q can be fit with the pure Coulomb Ansatz

(3.4) with no string tension, which indicates σ3Q ≃ σAbel
3Q . These figures are taken from Ref.[10].

To demonstrate σAbel
3Q ≃ σ3Q, we show in Fig.3(b) the difference ∆V3Q ≡ V3Q −V Abel

3Q plotted
against R [10], because, if σAbel

3Q = σ3Q, ∆V3Q is well reproduced by the pure Coulomb Ansatz,

∆V3Q ≡V3Q −V Abel
3Q =−∆A3Q

R
+∆C3Q, (3.5)

with ∆A3Q ≡A3Q−AAbel
3Q , ∆C3Q ≡C3Q−CAbel

3Q and 1/R≡∑i< j 1/|ri−r j|. In Fig.3(b), ∆V3Q obeys a
pure Coulomb form with no string tension, which is a clear evidence of perfect Abelian dominance
of quark confinement in baryons: σAbel

3Q ≃ σ3Q [10].
To summarize, from the analysis of the accurate lattice QCD data of V (r), V Abel(r), V3Q and

V Abel
3Q [9, 10], we find perfect Abelian dominance of the string tension in QQ̄ and 3Q potentials:

σ ≃ σAbel ≃ σ3Q ≃ σAbel
3Q .

4. Monopole Dominance of Quark Confinement in Mesons and Baryons

Finally, we accurately investigate monopole dominance of quark confinement for both QQ̄ and
3Q systems in SU(3) lattice QCD at β=5.8 on 163 ×32 with 2,000 gauge configurations.

4.1 Hodge Decomposition and Monopole Projection

In the MA gauge, it is likely that only Abelian gluon component is essential for the long-
distance QCD physics, and infrared QCD can be approximated by Abelian-projected QCD, as is
indicated by perfect Abelian dominance of quark confinement.

Abelian-projected QCD in the MA gauge has not only the color-electric current jµ but also
the color-magnetic monopole current kµ , which topologically appears. In the dual superconductor
scenario, the monopole current kµ is considered to play an essential role to quark confinement. By
the Hodge decomposition, the Abelian-projected QCD system can be divided into the monopole
part (kµ ̸= 0, jµ = 0) and the photon part ( jµ ̸= 0, kµ = 0), as schematically illustrated in Fig.4.
Then, the importance of the monopole current kµ can be checked, using the Hodge decomposition.

In the lattice formalism, DeGrand and Toussaint performed the Hodge decomposition [14]. In
lattice QCD, the Abelian gluon θµ(s) = agAµ(s) is the exponent in Abelian link-variable,

uµ(s) = eiθµ (s) = eiθ 3
µ (s)T

3+iθ 8
µ (s)T

8
= diag(eiθ (1)

µ (s),eiθ (2)
µ (s),eiθ (3)

µ (s)) ∈ U(1)2, (4.1)

5
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QCD� QCD in  
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Monopole current�
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Chiral Sym Breaking, 
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No Chiral Breaking, 
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Figure 4: A dual superconductor scenario from QCD in the MA gauge. In the MA gauge, infrared QCD
becomes Abelian-like because of large off-diagonal gluon mass of about 1GeV [6], and monopole currents
topologically appear [5]. By the Hodge decomposition, the QCD system in the MA gauge can be divided
into the monopole part (kµ ̸= 0, jµ = 0) and the photon part ( jµ ̸= 0, kµ = 0).

with θ (i)
µ (s) ∈ [−π,π) (i=1,2,3), which is consistent with the continuum gluon Aµ as a → 0. The

Abelian field strength θµν(s) = a2gFµν(s) is the exponent in the Abelian plaquette variable,

uµν(s) = ei(∂∧θ)µν (s) = eiθµν (s) = eiθ 3
µν (s)T

3+iθ 8
µν (s)T

8
= diag(eiθ (1)

µν (s),eiθ (2)
µν (s),eiθ (3)

µν (s)) ∈ U(1)2. (4.2)

Here, θ (i)
µν(s) is the principal value θ (i)

µν(s) ∈ [−π,π) (i=1,2,3), which is U(1)2-gauge invariant and
consistent with the continuum Abelian field strength Fµν as a → 0 [4]. Then, θµν is written as

θµν(s) = (∂ ∧θ)µν(s)+2πnµν(s), n(i)µν(s) ∈ Z (i = 1,2,3), (4.3)

where nµν(s) is U(1)2 gauge-variant and corresponds to the singular Dirac string as a → 0 [4]. The
electric current jµ and the monopole current kµ are derived from the Abelian field strength θµν ,

jν ≡ ∂µθµν , kν ≡ ∂µ θ̃µν = 2π∂µ ñµν , k(i)ν = 2π∂µ ñ(i)µν ∈ 2πZ, (4.4)

with the dual tensor θ̃µν ≡ 1
2 εµναβ θαβ . The monopole part θ Mo

µ and the photon part θ Ph
µ satisfy

θ Mo
µν ≡ (∂ ∧θ Mo)µν (mod 2π), ∂µθ Mo

µν = 0, ∂µ θ̃ Mo
µν = kν , (4.5)

θ Ph
µν ≡ (∂ ∧θ Ph)µν (mod 2π), ∂µθ Ph

µν = jν , ∂µ θ̃ Ph
µν = 0. (4.6)

From ∂µ θ̃ Ph
µν = 0, one finds θ Ph

µν = (∂ ∧ θ Ph)µν and ∂µ(∂ ∧ θ Ph)µν = ∂ 2θ Ph
ν − ∂ν(∂µθ Ph

µ ) = jν .
Taking the Landau gauge ∂µθ Ph

µ = 0, the photon part θ Ph
ν is derived from the electric current jν ,

∂ 2θ Ph
ν = jν , θ Ph

ν =
1

∂ 2 jν , i.e., θ Ph
ν (s) = ∑

s′
⟨s| 1

∂ 2 |s
′⟩ jν(s′), (4.7)

using the inverse d’Alembertian on the lattice [4]. The monopole part θ Mo
µ (s) is obtained as

θ Mo
µ (s) = θµ(s)−θ Ph

µ (s). The monopole part θ Mo
µ (s) and the photon part θ Ph

µ (s) satisfy Eqs.(4.5)
and (4.6) near the continuum with a small a [4].

Using the monopole/photon link-variables,

uMo
µ (s)≡ eiθ Mo

µ (s) ∈ U(1)2, uPh
µ (s)≡ eiθ Ph

µ (s) ∈ U(1)2, (4.8)

monopole projection and photon projection are defined as follows:

6
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• Monopole projection (the monopole part) is defined by the replacement of {uµ(s)}→{uMo
µ (s)},

which keeps the monopole current kµ and eliminates the electric current jµ .

• Photon projection (the photon part) is defined by the replacement of {uµ(s)} → {uPh
µ (s)},

which keeps the electric current jµ and eliminates the monopole current kµ .

The dominant role of the monopole part is called “monopole dominance”, and monopole domi-
nance has been investigated for quark confinement in lattice QCD [8].

4.2 Monopole Dominance of Confinement for Quark-Antiquark and 3Q Systems

The monopole part VMo(r) and the photon part VPh(r) of the QQ̄ potential are defined by the
monopole/photon-projected Wilson loop, Wr×t [uMo

µ ] and Wr×t [uPh
µ ],

VMo(r) =− lim
t→∞

1
t

ln⟨Wr×t [uMo
µ ]⟩, VPh(r) =− lim

t→∞

1
t

ln⟨Wr×t [uPh
µ ]⟩. (4.9)

Figure 5(a) shows the lattice QCD result for the static QQ̄ potential V (r) in SU(3) QCD, VAbel(r)
in Abelian-projected QCD, VMo(r) in the monopole part, and VPh(r) in the photon part. While the
photon part has almost no confining force, the monopole part almost keeps the confining force.
Thus, monopole dominance is found for quark confinement in the QQ̄ system.
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Figure 5: (a) The lattice QCD result for the static QQ̄ potential V (r) (black) in SU(3) QCD, VAbel(r) (blue)
in Abelian-projected QCD, VMo(r) (green) in the monopole part, and VPh(r) (red) in the photon part. (b) The
lattice QCD result for the 3Q potential V3Q (black) in SU(3) QCD, V Abel

3Q (blue) in Abelian-projected QCD,
and V Mo

3Q (green) in the monopole part, plotted against Lmin.

Similarly, the monopole part V Mo
3Q (r) of the 3Q potential is defined by

V Mo
3Q =− lim

t→∞

1
t

ln
⟨
W3Q

[
uMo

µ
]⟩
. (4.10)

Figure 5(b) shows the lattice QCD result for the 3Q potential V3Q in SU(3) QCD, V Abel
3Q in Abelian-

projected QCD, and V Mo
3Q in the monopole part, plotted against Lmin. Monopole dominance is found

also for quark confinement in the 3Q system.
The string tension σMo in the monopole part is estimated from the lattice QCD data in Fig.5,

and monopole dominance is estimated as σMo ≃ 0.92σ for the string tension in QQ̄ and 3Q systems.
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5. Summary and concluding remarks

We have investigated Abelian dominance and monopole dominance of quark confinement for
QQ̄ and 3Q systems in SU(3) quenched lattice QCD in the MA gauge. For large physical-volume
lattices with La ≥ 2fm, we have found perfect Abelian dominance of the string tension for both
QQ̄ and 3Q systems: σ ≃ σAbel ≃ σ3Q ≃ σAbel

3Q . We have found monopole dominance of the string
tension for both QQ̄ and 3Q systems, and have estimated σMo ≃ 0.92σ .
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