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Newly introduced equilibrium Wigner functions for particles with spin one-half are used in the
semi-classical kinetic equations to study a possible relation between thermal vorticity and spin
polarization. It is shown that in global equilibrium both the thermal-vorticity and spin polariza-
tion tensors are constant but not necessarily equal. In the case of local equilibrium, we define
a procedure leading to hydrodynamic equations with spin. We introduce such equations for the
de Groot, van Leeuwen, and van Weert (GLW) formalism as well as for the canonical scheme
(these two frameworks differ by the definitions of the energy-momentum and spin tensors). It is

found that the GLW and canonical versions are connected by a pseudo-gauge transformation.
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1. Introduction

Recent measurements of the A—hyperon spin polarization in heavy-ion collisions by the STAR
experiment [1, 2] have inspired a broad interest in the theoretical studies related to spin polar-
ization and vorticity formation. The results of various investigations that refer to: the spin-orbit
coupling [3, 4, 5, 6, 7], statistical properties of matter in global equilibrium [8, 9, 10, 11, 12, 13],
kinetic models of spin dynamics [14, 15, 16, 17], hydrodynamics with triangle anomalies [18, 19]
and the Lagrangian formulation of hydrodynamics [20, 21, 22] have been reported in this context.

A natural framework that can deal simultaneously with polarization and vorticity (dubbed
below the hydrodynamics with spin) was proposed in Refs. [23, 24], see also Refs. [25, 26]. This
framework is based on a generalized form of the equilibrium distribution functions for particles
with spin-1/2 (scalar phase-space distribution functions are replaced by 2 x2 relativistic spin density
matrices).

In this contribution we discuss the results of our recent work [27]. We introduce the equilib-
rium Wigner functions for particles with spin-1/2, which satisfy the semi-classical kinetic equation,
and study a possible relation between spin polarization and thermal vorticity. We also discuss a
procedure leading to the hydrodynamics with spin, for the case of the de Groot, van Leeuwen, and
van Weert formalism (GLW) and the canonical formalism.

2. Basic concepts —global and local thermodynamic equilibrium

In the case of spinless particles, the phase space distribution function f(x,p) satisfies the
Boltzmann equation

p'uaﬂf(x7p) = C[f('xap)]a (21)

where p* = (E,,p) and d, = (;,V) are the particle four momentum and space-time derivative,
while C[f] is the collision integral. The latter vanishes in the case of free streaming particles as
well as in global or local thermodynamic equilibrium. In the free-streaming case, the distribution
function fi(x, p) exactly satisfies the drift equation p*d, fis(x,p) = 0. In the global thermody-
namic equilibrium, the drift equation is also satisfied. In this case it leads to the constraints on
the hydrodynamic parameters which specify the form of the equilibrium distribution feq(x,p). In
particular, the parameters & (x) (defined as the ratio of the local chemical potential 1 (x) to the local
temperature 7'(x)) and B, (x) (defined as the ratio of the local four fluid velocity uy (x) to the local
temperature 7 (x) ) satisfy the conditions: d,& = 0 and d;, By (x) + dy By (x) = 0. The first equation
implies that & (x) = u(x)/T (x) = E° = const. The second one is known as the Killing equation. It
has a solution of the form

Bu(x) = By + @y, x", (2.2)

where, Bﬁ and the antisymmetric tensor arﬁv are constants. For a given form of the B (x) field,
thermal vorticity is defined as

1
(D'pv = _5 (8,uﬁv - avﬁu) . (2'3)
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Using Eq. (2.2) in Egs. (2.3), one can show that @, = o?

Lv» I-e., the thermal vorticity in the global

equilibrium is constant.

In the local equilibrium, the drift equation does not vanish. This is so, because in this case a
correction O f has to be added to the equilibrium function fq to describe dissipative phenomena.
However, if the gradients of the local hydrodynamic variables are small, the dissipative effects
can be neglected. Hydrodynamic parameters may be constrained in this case by some specific
moments of Eq. (2.1) in momentum space. They yield the conservation laws for charge, energy,
and momentum.

For particle with spin, one makes use of the Wigner functions V/eff (x,k) which, in addition
to the standard hydrodynamic parameters, depend on an antisymmetric spin polarization tensor
@y (x). This allows us to distinguish between four rather than two different types of equilibrium:
1) global equilibrium— in this case the B, field is a Killing vector, @,y = —1 (dufBy — W PBu) =
@,y = const, & = const, 2) extended global equilibrium — Py, is a Killing vector, @, = const,
®yy = const but @,y 7# Oy, & =const, 3) local equilibrium — ﬁu field is not a Killing vector but
one can still have @y (x) = @,y (x), & = E(x), 4) extended local equilibrium — B, field is not a
Killing vector, @yy (x) # @uyv(x), & = &(x).

We emphasize that similarly to the case of spinless particles, the global and extended global
equilibrium states correspond to the case where #;4(x, k) exactly satisfies the kinetic equation with
a vanishing collision term, while for the local and extended local equilibrium states only certain
moments of the kinetic equation for #¢q(x,k) can be set equal to zero (again with a vanishing
collision term), which results in the conservations laws for energy, linear and angular momentum,
and charge.

3. Equilibrium Wigner functions

In our approach we make use of the semi-classical connection between Wigner functions and
the phase-space dependent spin density matrices f: (x, p), introduced by de Groot, van Leeuwen,
and van Weert in Ref. [28] as follows

2
Wi 522 / dP W (k— pyu (p)a (p) ;5 (x, p).

Vg (k) = =3 zjdps (k) ()P (p)f (5,

_dp
Here dP = @n'E,

being the on-mass-shell particle energy. Note that four momentum k = k* = (k°,k) appearing as

is the Lorentz invariant measure in momentum space with E, = /m?2 + p?

an argument of the Wigner function is not necessarily on the mass shell.
The equilibrium Wigner functions can be constructed by taking, as an input, the following
expressions for ;5 (x, p) and f (x,p) [11]

o) = 5 i (pX up), fi(p) = 5 B(p)X ().
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Here m is the (anti-)particle mass, u,(p), and v,(p) are Dirac bispinors with spin indices r and s
running from 1 to 2. The matrices X* are defined by the formula X* = exp [+& (x) — By (x) p* ] M*
where M* = exp [i%(oﬂv(x)f,“v] and X"V = (i/4)[y*,7"] is known as the Dirac spin operator.

As it was shown in Ref. [24], if we assume that the spm polarization tensor @y satisfies the
conditions, @,y ®*" > 0 and @y, ®"" = 0, where ®*" *%vaﬁw B is the dual spin polarization
tensor, we can derive the following expression for the matrix M=,

inh 1 /1
M* = cosh({) + széz‘:) oI, where = 5\/ Oy 1.

The parameter { can be interpreted as the ratio of spin chemical potential Q to the temperature
T [23].

Wigner functions are 4x4 matrices which satisfy the relation “//e(jf(x,k) = }/07/ (x,k) .
Therefore, they can always be decomposed in terms of the 16 independent generators of the Clifford

algebra

Wt (k) = 7 [Zaa k)05 P ) P (5 R+ I 7 (5K + 22775 (1K)
(3.1)
Various coefficient functions appearing in the expansion of equilibrium Wigner function can be
obtained by contracting 7/% (x,k) with appropriate gamma matrices and then taking the trace, for
details see Ref. [27]. The total Wigner function is #eq(x, k) = #¢g (x,k) +Wq (x,k).

4. Semi-classical expansion and Boltzmann-like equations for particles with spin

For an arbitrary Wigner function, a similar decomposition can be done in terms of the ex-
pansion coefficients .7 (x,k), Z(x,k), Vu(x,k), ) (x,k) ,and .7y (x,k). The function # (x,k)
satisfies the equation of the form [29, 30]

(yuK* —m) # (x,k) =0, K" Zk“—i-%&“. 4.1)

The above equation exactly holds in global equilibrium and should give the constraint on hydrody-
namic variables i, T, u* and @,y in local equilibrium. Solution of above equation can be written
in the form of a series in 7,

PR ACEY T AONY L AC N X e{F, PV, Dy, Lo}

Keeping the terms up to the first order in 7, we can obtain the following equations for the coeffi-
cients functions .7 ) (x, k) and szf(g) (x,k),

K0y F(0)(x,k) =0, kMO (x,k) =0, ky o[y (x,k) =0.

It can be easily shown that the functions .# 7 and A ) are basic independent ones and other
coefficient functions can be expressed in terms of these two functions. Also, the algebraic structure
of the equilibrium coefficient functions is consistent with the zeroth-order equations obtained from
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the semi-classical expansion of the Wigner function. Therefore, one can take 2" (0 = Zeg- In this
way one can get,

KM Oy Feq(x,k) =0, kFIy (k) =0,  ky ) (x,k) =0. 4.2)

Using the expressions (obtained by contracting %qi (x,k) with appropriate gamma matrices and
then taking the trace), for the coefficients functions Feq(x,k) and @ (x,k) and then substitutes
them into Egs. (4.2), one can see that the resulting equations will be exactly fulfilled if S* field
satisfies the Killing equation. This suggests that thermal vorticity @), is constant, while the param-
eters & and spin polarization tensor @y are also constant. Note that no conclusion can be drawn if
oy is equal to @,y. This situation corresponds to case of extended global equilibrium.

5. Procedure to formulate hydrodynamics with spin

5.1 Charge current

The charge current .4 %*(x) can be expressed in terms of the Wigner function # (x,k) as fol-
lows [28]

N (x) = tr/d“ky“wx,k) _ /d“k“l/“(x,k). 5.1)

Using the expression for #%(x,k) up to the first order in 7, one can find the equilibrium charge
current to be of the form AF (x) = Ng (x) + ONg; (x), where SN (x) is the first order in /i correction
to Ag (x). It can be easily shown that dp, 6Ng;(x) = 0. Thus, the conservation law of charge can
be expressed by the equation dyNg (x) = 0, where Ngi(x) = [ d*k ”//(8‘) (x,k). It turns out, that this
expression matches with that derived in Ref. [23].

5.2 Energy-mometum and spin tensors

In the GLW formulation, the energy-momentum and spin tensors are expressed in terms of the
Wigner function as [28]

T (%) —tr / PR (x,k) = / PRI KY F (3, ), (5.2)

ShY (1) 4/d4ktr{< Guv’},l}+m(Y[Mk\’]}ﬂ_}ﬂy[ukv]))W(x,k)]. (5.3)

Keeping terms only up to the first order in 7, replacing %) (x,k) by Feq(x,k) = 0, and carrying
out the momentum integrations, we can reproduce the perfect-fluid formula for the GLW energy-
momentum tensor reported in Ref. [23]. It should obey the conservation law 8HTG“LVW(x) =0.
The expression for the GLW spin tenor can be obtained by replacing # (x,k) = #¢q(x,k) and
carrying out the momentum integration. Note, that if the energy-momentum tensor Tél]fw (x) is
symmetric, the conservations of the orbital and spin parts of the total angular momentum should
hold separately, therefore, we must have d; SG”1 v =0.

The canonical versions of the energy-momentum Tiay (x) and spin Séa}‘f ¥(x) tensors can be
obtained from the Dirac Lagrangian by applying the Noether theorem [31] and are given by the
following expressions

ThN(x) = [ a4 (x0), (5.4)
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SERY () = Z / d*ktr [{o“v,qﬂ}mx,k)} = ggmw / d*k e (x,k) = gewvm(x).(iﬁ

In this case, using Eq. (5.4), we obtain Teﬁ}éan(x) = TJ&I}LW(X) + 8THY (x), where SE‘éian(x) =
—L d4kk"8,1¢%ﬁ“ (x,k) = —8,15:3%\{1, (x). Note that canonical energy-momentum tensor should
be conserved as well, i.e., we must have 8a7;ﬁ€an(x) = 0. Since Séé\f, (x) is antisymmetric in the
indices A and u, therefore, 8“ ) TC‘;X (x) = 0. Thus, the conservation law for the canonical energy-
momentum tensor is analogous to the GLW case.

The canonical version of equilibrium spin tensor can be obtained by considering the axial-
vector component in Eq. (5.5) in the zeroth order (with the assumption that MK(O) (x,k) = Hoq i (x,k))
and then carrying out the integration over the four-momentum k. It can be shown that

A A A
Seah" = Sgiw +Siw +Seiw (5.6)
and
A A
DSELEY (x) = — S () + Oa St (x) = Tkt — THY. (5.7)

This is interesting, as one can see that the divergence of the canonical spin tensor is equal to the
difference of the energy-momentum components (provided the GLW spin tensor is conserved).
This result is expected because the energy-momentum tensor is not symmetric in the canonical
case.

It is important to note that the two approaches (GLW and canonical) are connected via a
pseudo-gauge transformation. In fact, if we define a super-potential ®* 4V = Sé&{,’ — Séévf} we can
show that

can

1
SLAY = Sehy — @MY and T =T + 50 (@*v 4 @tvhporit). (58)

5.2.1 Conservation laws from the kinetic equations

Conservation laws for charge and energy-momentum can be obtained respectively by taking
the zeroth and first moments of the kinetic equation k* dy,.%cq(x,k) = 0. However, the equations for
charge and energy-momentum are not closed due additional degrees of freedom arising from the
spin polarization. To close them, we need to determine the dynamics of spin. If we multiply the
kinetic equation k%0Jg <7 (x,k) = 0, by a factor e#P Yskﬁ and then integrate over k we can obtain
the dynamics of spin. It agrees, in fact, with the conservation of the GLW spin tensor.

6. Summary and conclusions

Using the equilibrium distribution functions of spin-1/2 particles that have been put forward
in Ref.[11] we have constructed the equilibrium Wigner functions that satisfy the semi-classical
kinetic equation. For a collision-less case, using the semi-classical expansion of Wigner function
we obtain the Boltzmann like kinetic equations with spin. Using these kinetic equations we have
shown that there is no direct relation between the thermal vorticity and spin polarization, except
for the fact that the two should be constant in global equilibrium. Finally, we outline the procedure
to construct the conservation laws for hydrodynamics with spin within the framework of de Groot,
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van Leeuwen, and van Weert (GLW) and in the canonical framework. In the GLW case, the energy-
momentum tensor is symmetric and spin is conserved, while for the canonical case the energy-

momentum tensor is asymmetric and spin is not conserved. Interestingly, the two cases are found

to connected by the pseudo-gauge transformation.
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