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Marsh et al. detected radio and optical pulsations from the binary system AR Scorpii (AR Sco).
This system, with an orbital period of 3.56 h, is composed of a cool, low-mass star and a white
dwarf with a spin period of 1.95 min. Optical observations by Buckley et al. showed that the
polarimetric emission from the white dwarf is strongly linearly polarised ( up to ~ 40%) with pe-
riodically changing intensities. This periodic non-thermal emission is thought to be powered by
the highly magnetised (5 x 10® G) white dwarf that is spinning down. The morphology of the po-
larisation signal, namely the position angle plotted against the phase angle, is similar to that seen
in many radio pulsars. In this paper we demonstrate that we can fit the traditional pulsar rotating
vector model to the optical position angle. We used a Markov-chain-Monte-Carlo technique to
find the best fit for the model yielding a magnetic inclination angle of o = (86.63:(8))0 and an
observer angle of § = (60.5fgf )°. This modelling supports the scenario that the synchtrotron
emission originates above the polar caps of the white dwarf pulsar and that the latter is an orthog-

onal rotator.
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1. Introduction

AR Sco is is a unique binary system, which has some similar properties to the propeller system,
AE Aquarii [1]. Marsh et al. [1] observed pulsating emission ranging from the radio to the X-ray
band. They found that the orbital period is 3.56 hours and the white dwarf pulsar’s spin period is
1.95 minutes. A change in period (P) of 3.9 x 10~ 3ss~! was observed [1], but the value of P was
later questioned by Potter and Buckley [2], where Stiller et al. [3] found a revised P of about twice
the reported value from Marsh et al. [1].

The aim of this paper is to show that the standard rotating vector model [4] can be used to model the
optical polarisation position angle of the white dwarf pulsar to constrain the origin of the emission.
For more details, see Du Plessis et al., in preparation.

1.1 Observations

The light curve from the right column of Figure 2 in Marsh et al. [1] shows a double peak with
a larger first peak followed by a smaller second peak, with a separation of ~ 180° in phase. This
could indicate that the magnetic inclination angle « is close to 90° since the observation shows
radiation from both poles. Buckley et al. [5] found the emission of AR Sco was strongly linearly
polarized (up to ~ 40%) and observed a 180° swing in the polarisation position angle (PPA). Given
the lack of evidence for mass loss from the secondary or accretion [1], Buckley et al. [5] interpreted
the spin-down power loss as due to magnetic dipole radiation. AR Sco is thus the first known white
dwarf pulsar, since it is pulsating with predominantly non-thermal emission, analogous to pulsating
neutron stars.

1.2 The Rotating Vector Model (RVM)

Pulsars are known to be rotating neutron stars with two radio emission cones located at the magnetic
poles. The inclination angle of the magnetic axis with respect to the rotation axis is represented by
o, the observer’s line of sight by {, and the impact angle 8 = { — o. Using the RVM, the PPA y
is given by

sinosin(¢ — @)
sin{ cosa —cos § sinocos(¢p — @)’

tan(y — yp) = (1.1)

with ¢ the sweeping (phase) angle. The parameters ¢y and Yy define a fiducial plane. The RVM
makes the following assumptions: a zero emission height, the emission is tangent to the local mag-
netic field, the pulsar’s co-rotational speed at the emission altitude is non-relativistic, the emission
beams are circular, the magnetic field is well approximated by a static vacuum dipole magnetic
field, and the plane of polarisation is parallel to the local magnetic field.

2. Method

2.1 Folding of Data

We used the PPA data from [5] obtained on 14 March 2016 in the 340 — 900 nm range. We
normalised the data to the spin period of the white dwarf by converting the time, which was in
Barycentric Julian Day (BJD), to seconds and dividing by the spin period. We then found the
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minimum PPA of the dataset to define #y, which is the starting point used to fold the dataset. We
used a standard folding technique to convert to cyclic time. About 5% of the data points deviated
from the average curve because of a 180° ambiguity in the PPA. The folding was found to be
affected by the choice of #5. The problem was solved by generating a smoothed PPA curve using
the Kernel Density Estimation method and a Gaussian kernel e.g. Silverman [6]. Depending on the
deviation between the smoothed curve and the folded data, we assigned a new convention to the
points with a large deviation by shifting these points by 180° (since there is a 180° ambiguity in
PPA when deriving the RVM). We then binned the data to 30 rotational phase bins.

2.2 Fixing PPA Discontinuities

Using the RVM, Equation 1.1, causes the model to be discontinuous since the arctangent function
is discontinuous. To make the model continuous, we calculated where ¢ made the denominator of
Equation 1.1 go to zero:

tan
discontinuous = Arccos ( C) . 2.1)

tan o
Using this equation, we shift the predicted PPA by 360° at the points where the model was discon-
tinuous for the different cases to get a smooth, continuous PPA prediction.

2.3 Code Verification and Best Fit

We used the convention of Everett and Weisberg [7], letting W increase in the counter-clockwise
direction, where we define ¥/ = —y. We then calibrated our model by comparing our best fit
against independent RVM fits to radio pulsar data [7], and finding the same results within error
margins for o and . The “best fit” (50" percentile or median in the posterior distribution of fit
parameters) was found using a Markov-Chain Monte Carlo technique [8]. We fit for cos a and
cos §, since we are assuming that cos  is uniformly distributed.

3. Results

We found that we can model the white dwarf pulsar using the traditional RVM model. When we
found the best fit using the angles directly, it led to disconnected contours in parameter space. We
then found the best fit using the cosine of the angles. We found a unique fit for the RVM to the PPA
data, namely o = 86.63:2 and § = 60.4f2:8. The large duty cycle leads to relatively small errors
on ¢ and . The red curve in Figure 3 shows the best fit and the yellow curves are the “error band”
derived from the best fit parameters. We also found a best fit with an added likelihood parameter
f, which compensates for errors underestimated by some fraction f.

4. Discussion

We found o ~ 90° confirming the expected value from light curve inspection. Since the PPA of
the white dwarf could be modelled by the RVM this could mean that the emission of the AR Sco
system originates from the magnetic poles of the white dwarf. In the future we want to fit the
RVM to PPA data in other energy bands, and for different orbital phases. We will also compare our
modelling to the work of Potter and Buckley (in preparation). We furthermore want to incorporate
a non-zero emission height in the RVM and apply more detailed emission models to AR Sco.
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Figure 1: The best fit for the model using coso
and cos § The parameter values found were coso =
0.060199% cos £ =0.5079% g = (19.579:1)°, yp =
(135.1f2:;)°. The later 2 are nuisance parameters.
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Figure 2: The best fit for the PPA data using an
MCMC technique showing ensemble plots (possible
fits).

The funding for L.P. was given by the National Astrophysics and Space Science Program (NASSP).
This work is based on the research supported wholly in part by the National Research Foundation of
South Africa (NRF; Grant Number 99072). The Grantholder acknowledges that opinions, findings
and conclusions or recommendations expressed in any publication generated by the NRF supported
research is that of the author(s), and that the NRF accepts no liability whatsoever in this regard.

Appendix: RVM Derivation

For an alternative derivation, see Lyutikov [9] using similar techniques. The equation for the mag-

netic field of a static vacuum magnetic dipole is

B, L
B= 7 (2cos 07 +sin66) ,

G.D

where B,, is the magnetic field strength at the polar cap, and r and 6 (colatitude) are polar coordi-
nates. Calculating the unit vector for the magnetic field yields

ﬁ:

2c0s07+sin60

(5.2)

v1+3cos?0

A Cartesian representation of Equation (5.2) is given by

N

B =sinycos ¢X + sinysin@$ 4 cos ¥z

5.3)
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where [10]
B 3cos?6 —1 . 3cos6sin6 54
oSy = V1=3c0s26’ smy= V1—=3cos26 ©5
Let us define three rotation matrices
cosQr —sinQr 0 cosa 0 sino cos{ —sing 0
Ag; = |sinQt cosQt 0| ,Aq = 0 1 0 [,Az=|sin{ cos{ O (5.5)
0 0 1 —sina 0 cosa 0 0 1

where Q is the angular velocity of the pulsar, « is the inclination angle, and { is an arbitrary
observer angle. The total rotational matrix is equal to At = Ay Ag;Aq Where

cosQrcosasing —sinacos§ —sinQrsing cosacos § + cos Qr sinasin §
Aot = cos o sin Qf cos Q2 sin o sin . (5.6)
—sinasin{ —cosQrcosacos cossinQr cosasing —cosQrsinacos

We apply this rotation matrix to the magnetic field B, and choose ¢ such that (Aot -I§)y = (Aot
B), = 0. The left-most term yields

cosQrsinysing  cos@cos@siny

=— 5.7
cosy sin ¢¢ sin Q¢ sino 7
and the z-component gives
cos y(cos asin & — cos Qt sina cos §) — cos ¢ sin y(sin o sin § + cos o cos Qt cos §) 5.8)
+sinycos £ sinQssing = 0. '
Combing Equations (5.7) and (5.8) and dividing by sinycos ¢ cos Qf cos & yields
sin{ cosasin{  cosQrcos§ sinasin{  cos{sinQr
—— — —ta — — - — tan (p =0.
sin ysin Qt sincosQt  sinQrcos o cosQrcosa  cosQfcosa
(5.9)
Combining the tan ¢ and non-tan ¢ terms elegantly reduces Equation (5.9) to
in § sin Qf
tan ¢ = sing sin (5.10)

cos § sin o — sin § cos o cos Qr

We assume that the polarisation is perpendicular to the azimuthal vector ey = (—sin¢,cos¢,0),
meaning e, = ey X /i where 7 is the line-of-sight vector. The azimuthal vector is aligned with 7 by
applying the rotation matrix, where the primed coordinates are in the co-rotating frame. Calculating
ey’ = Aworey yields

sin @ (sinoccos § — cos acos Qrsin &) — cos @ sin Qi sin §
ey = cos 7 cos ¢ — cos o sin 2 sin ¢ . (5.11)
sin @ (sin o sin & + cos o cos Qt cos &) + cos ¢ sinQz cos §

The polarisation angle can now be calculated by e,’ = ¢y’ x #’,where A" = (1,0,0), which gives
ey’ =0, (ey)z,—(ey)y]". The polarisation position angle ¥ can now be calculated using tan'¥ =
(ep")y
(ep)z

. Upon simplification we find

tan @ (sin o sin § + cos Qr cos a cos §) + cos § sin Q¢
cos o sinQ tan ¢ — cos Qf ’

tanW¥ = (5.12)
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Substituting Equation (5.10) into Equation (5.12) and simplifying yields

in ¢ sin Qf
tan'¥ = — oo . (5.13)
sin§ cos a — sin ¢ cos § cos Q¢
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