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We study Ultra high energy cosmic ray (UHECR) as an effective tool to probe new physics inter-
actions thanks to its high energy beyond the currently available accelerator energies. In particular,
we consider electroweak sphaleron and microscopic black hole as some of the new physics exam-
ples generating genuinely large multiplicities resulting in various observable effects. We examine
the characteristic features of UHECR-nucleon collision events in the atmosphere and discuss the
search strategies of such events at Telescope Array Experiment (TA) and Pierre-Auger Observa-

tory (Auger).
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1. Introduction

The observation of Ultra-High-Energy (UHE) particles have provided good opportunities to
probe new physics above TeV scale. Many ¢'(10) EeV cosmic ray events (by Auger and TA
[1, 2]) and a few &'(1) PeV neutrino events (by the IceCube detector [3]) have been observed so
far. The scattering process of UHE cosmic rays with target nuclei in the atmosphere gives some
hints for physics at TeV scale since the energy of UHE particles around &'(1) PeV —&'(10) EeV
corresponds to the center-of-mass (CM) frame collision energy /s = ¢(1 — 100) TeV. The UHE
cosmic neutrinos also can be produced by photopion production from the cosmic ray protons and
the cosmic microwave background (CMB) photons, which is called the Greisen-Zatsepin-Kuzmin
(GZK) mechanism. We focus on electroweak sphaleron and microscopic black hole production
processes are discussed based on [4].

2. Event rates and features of air showers from new physics with high multiplicity

The electroweak sphaleron is a classical field configuration of non-abelian part of the gauge
field in the electroweak theory [5, 6]. It is directly related to the non-conservation of baryon number
(B) and lepton number (L) which are classically conserved global charges, even though the specific
combination B — L is fully conserved even at loop-level. Recently, it has been suggested that
the cross section can be (exponentially) unsuppressed at the collision energy above the sphaleron
potential height Egy, ~ 10 TeV [7, 8]. The minimal (B + L)-violating process (AB = AL = £3) is
our main interests. The microscopic black hole can be formed at a relatively low energy /s > &/(1)
TeV, in low-energy gravity scenarios [9, 10]. The black hole would decay into multiple number of
particles through Hawking radiation [11, 12, 13, 14].

Taking the parton distribution functions (PDF), f, (x, QZ), for a quark, ¢, in nucleon, N, the total
cross sections for electroweak sphaleron and microscopic blackhole are respectively are obtained
after the PDF convolution for nucleon:

1
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where § = 2xmyE},p and the parton level cross sections are given by

6ij—Ewsph(Ecm) =~ m%B(ECM/Esph), (2.2)
w
N 2
6ij»u(Ecm) ~ 7 (GpEcm)? (2.3)

respectively for sphaleron and black hole. The input parameters are p (unknown prefactor for
sphaleron process), Espn (sphaleron potential height), Gp = l/Mg’2 (the gravitational constant
in D = 4 4 n-dimensions with n-extra compact dimensions), my (the mass of Nucleon), Ej,, (the
collision energy in lab frame) and § (the collision energy at the parton level). The minimum energy
for making black hole (sphaleron) is controlled by xpmin = Min[§/(2myEap)].

Electroweak sphaleron and microscopic black hole production processes contain ¢(10) of pri-
mary hadronic components at the final states at the parton level. After the primary parton shower
and hadronization, the resulting number of pions 7%, 7 become larger than ordinary QCD pro-
cesses. Due to the enhancement of the primary charged pion number, new physics air showers



UHECR as a probe of new physics Seong Chan Park

show some distinguished features from the standard model QCD air shower cases. First, their peak
position (in the interaction depth) of the longitudinal distribution (Xyax) is become smaller since
the individual energy of each charged pions decreases and new physics air showers develop more
quickly. Second, their primary interaction points of air shower P(Xy) o< exp (—GimNAA;}nXo) have
a broader distribution due to their small cross sections (OsphH << Oqcp). We summarize all the

features in Fig. 1.
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Figure 1: The schematic features of QCD and the new physics events. Details are found in Ref. [4]

3. Conclusion

With the enhanced production cross sections at high energies and the distinguished features
in its air shower, new physics with high multiplicity can be probed further by using ongoing and
future air-shower detector arrays and neutrino shower observatories.
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