PROCEEDINGS
OF SCIENCE

New results on semileptonic B decays and CKM matrix elements $\left|V_{c b}\right|$ and $\left|V_{u b}\right|$ at Belle

Eiasha Waheed* \dagger
School of Physics, University of Melbourne
E-mail: waheede@student. unimelb.edu.au

Measurements of leptonic and semileptonic B meson decays are vital for the determination of CKM matrix elements $\left|V_{c b}\right|$ and $\left|V_{u b}\right|$. This article presents the measurements of semileptonic B decays $B^{0} \rightarrow D^{*} \ell v_{\ell}, B \rightarrow D^{(*)} \pi \ell \nu, B \rightarrow \eta^{\left({ }^{\prime}\right)} \ell v_{\ell}$ and the leptonic decay $B \rightarrow \mu^{-} \bar{v}_{\mu}$.These analyses use entire Belle data set collected at the $\Upsilon(4 S)$ resonance containing 772 million $B \bar{B}$ meson pairs.

[^0]
Introduction

Semileptonic B decays are a direct source to measure the CKM matrix elements $\left|V_{c b}\right|$ and $\left|V_{u b}\right|$ which eventually leads to precision tests for electroweak decays of the Standard Model (SM). These decays also probe the B meson structure and hence, the QCD form factors. In the note, $\left|V_{c b}\right|$ is calculated from the exclusive semileptonic $B^{0} \rightarrow D^{*} \ell \nu_{\ell}$ decay. To measure the inclusive $B \rightarrow X \ell v$ rate, we must understand exclusive components where X refers to the final states $B \rightarrow \eta \ell v$ and $B \rightarrow \eta^{\prime} \ell v$. The decay rates depend upon calculations of hadronic contributions to the matrix element. In the case of pure leptonic B decays such as $B \rightarrow \mu \nu$, the decay rate is proportional to $\left|V_{u b}\right|$ which governs the coupling between the u and b quarks. $B \rightarrow D^{(*)} \pi \ell v$ is an important background for high-multiplicity semileptonic B decays such as $B \rightarrow D^{*} \ell \nu_{\ell}$ and $B \rightarrow D^{*} \tau \nu_{\tau}$, and hence a precise measurement of this decay is very important.

1. Measurement of $\left|V_{c b}\right|$ from $B^{0} \rightarrow D^{*-} \ell^{+} v_{\ell}$ decay

The decay is reconstructed in the following channel: $B^{0} \rightarrow D^{*-} \ell^{+} v_{\ell}$ where $D^{*-} \rightarrow \bar{D}^{0} \pi^{-}$and $\bar{D}^{0} \rightarrow K^{-} \pi^{+}$. This channel offers the best purity for the $\left|V_{c b}\right|$ measurement, which is critical as it is limited by systematic uncertainty. The experimentally most precise determination of $\left|V_{c b}\right|$ is presented in [3]. The differential decay rate of $B \rightarrow D^{*} \ell v$ decay is proportional to $\left|V_{c b}\right|$, and helicity amplitudes. The kinematics of the decay is characterised by four variables, three angular observables $\theta_{\ell}, \theta_{\nu}, \chi$ and $w=\frac{m_{B}^{2}+m_{D^{*}}^{2}-q^{2}}{2 m_{B} m_{D^{*}}}$. In the definition of w, q^{2} is the momentum transfer between the B and the D^{*} meson, and m_{B} and $m_{D^{*}}$ are their masses. Two different parameterisations of the hadronic transition form factors are used to extract $\left|V_{c b}\right|$: the model dependent Caprini-LellouchNeubert (CLN) form factor parameterisation [1] and the model independent Boyd-Grinstein-Lebed (BGL) parameterisation [2]. The theoretically favourable BGL parameterisation gives a higher value for $\left|V_{c b}\right|$, which is closer to the value measured by inclusive approach [4]. A simultaneous fit is performed to 1 D projections of $w, \cos \theta_{\ell}, \cos \theta_{v}$ and χ to extract the form factor parameters and $\left|V_{c b}\right|$. The results from the fit are shown in Fig.[1]. The following values for $\left|V_{c b}\right|$ are extracted [3]:

$$
\begin{align*}
& \left|V_{c b}\right|=(38.7 \pm 0.2 \pm 0.6 \pm 0.5) \times 10^{-3}(\mathrm{CLN}+\mathrm{LQCD}) \text { and } \tag{1.1}\\
& \left|V_{c b}\right|=(42.5 \pm 0.3 \pm 0.7 \pm 0.6) \times 10^{-3}(\mathrm{BGL}+\mathrm{LQCD}) \tag{1.2}
\end{align*}
$$

Lepton flavour universality between electron and muon channels has been calculated as [3],

$$
\begin{equation*}
\frac{\mathscr{B}\left(B^{0} \rightarrow D^{*+} e^{-} v_{e}\right)}{\mathscr{B}\left(B^{0} \rightarrow D^{*+} \mu^{-} v_{\mu}\right)}=1.01 \pm 0.01 \pm 0.03 . \tag{1.3}
\end{equation*}
$$

2. Measurement of the branching fraction of $B \rightarrow D^{(*)} \pi \ell \nu$ at Belle using hadronic tagging in fully reconstructed events

The process $B \rightarrow D^{(*)} \pi \ell v$ proceeds predominantly via $B \rightarrow D^{(*)} \ell v$, where $D^{* *}$ is an orbitally excited state of a charmed meson [7]. The decay is reconstructed by tagging one B meson in a hadronic mode. Since neutrinos cannot be detected in the Belle detector, the signal mode is reconstructed using rest-of-event information excluding the final state neutrino and its invariant

Figure 1: Results of the fit with BGL form factor parameterisation. The points with error bars are the on-resonance data. The histograms are, top to bottom, the signal component, $B \rightarrow D^{* *}$ background, signal correlated background, uncorrelated background, fake ℓ component, fake D^{*} component and continuum.
mass, M_{ν}, by employing kinematic constraints. The branching fraction is extracted by performing a fit to the spectrum of

$$
\begin{equation*}
M_{v}^{2}=\left(\left(p_{e^{+}}+p_{e^{-}}\right)-p_{B_{\text {tag }}}-p_{D^{(*)}}-p_{\pi}-p_{\ell}\right)^{2} / c^{2}, \tag{2.1}
\end{equation*}
$$

where $\left(p_{e^{+}}+p_{e^{-}}\right)$is the sum of he four-momenta of the colliding beam particles. M_{V}^{2} is fitted with a probability density function (PDF) derived from simulation to extract the yields. Then B is determined using the ratios of the fitted yields to MC and the branching fractions used in MC. Neutral and charged B mesons are fitted separately where a simultaneous fit is performed to $B \rightarrow D \pi \ell v$ and $B \rightarrow D^{*} \pi \ell v$. The branching fractions calculated are as follows [5],

$$
\begin{align*}
\mathscr{B}\left(B^{+} \rightarrow D^{-} \pi^{+} \ell^{+} v\right) & =\left(4.55 \pm 0.27_{\text {stat. }} \pm 0.39_{\text {syst. }}\right) \times 10^{-3}, \\
\mathscr{B}\left(B^{0} \rightarrow \bar{D}^{0} \pi^{-} \ell^{+} v\right) & =\left(4.05 \pm 0.36_{\text {stat. }} \pm 0.41_{\text {syst. }}\right) \times 10^{-3}, \\
\mathscr{B}\left(B^{+} \rightarrow D^{*-} \pi^{+} \ell^{+} v\right) & =\left(6.03 \pm 0.43_{\text {stat. }} \pm 0.38_{\text {syst. }}\right) \times 10^{-3}, \\
\mathscr{B}\left(B^{0} \rightarrow \bar{D}^{* 0} \pi^{-} \ell^{+} v\right) & =\left(6.46 \pm 0.53_{\text {stat. }} \pm 0.52_{\text {syst. }}\right) \times 10^{-3} . \tag{2.2}
\end{align*}
$$

3. Measurement of the decays in $B \rightarrow \eta \ell v_{\ell}$ and $B \rightarrow \eta^{\prime} \ell v_{\ell}$ fully reconstructed events at Belle

Precise measurements of $B \rightarrow \eta \ell \nu_{\ell}$ and $B \rightarrow \eta^{\prime} \ell \nu_{\ell}$ decay rates will improve the inclusive determination of $\left|V_{u b}\right|$ because lack of knowledge on all exclusive $B \rightarrow u \ell v$ decays are the primary
contributions to the systematic uncertainty [8]. The branching fraction for $\mathscr{B}\left(B^{+} \rightarrow \eta \ell^{+} \nu_{\ell}\right)$ and $\mathscr{B}\left(B^{+} \rightarrow \eta^{\prime} \ell^{+} v_{\ell}\right)$ is calculated. The decay is reconstructed by identifying $B_{\text {tag }}$ using the beamconstrained mass, $M_{\mathrm{bc}}=\sqrt{E_{\text {beam }}^{*}-\left|\vec{p}_{B_{\text {tag }}}\right|^{2}}$, and the energy difference, $\Delta E=E_{B_{t a g}}^{*}-E_{\text {beam }}^{*}$, where $E_{\text {beam }}^{*}$ is the energy of the colliding beam particles in the c.m. frame and $E_{B_{\text {tag }}}^{*}$ and $\vec{p}_{B_{t a g}}$ are the reconstructed energy and three-momentum of the $B_{\text {tag }}$ candidate respectively. $B_{\text {sig }}$, is reconstructed using all charged particles and neutral clusters not associated with the $B_{\text {tag }}$ candidate. The $B \rightarrow$ $\eta^{(')} \ell \boldsymbol{v}_{\ell}$ yield is extracted from the distribution of the missing mass squared, defined as $M_{m i s s}^{2}=$ $\left(p_{B_{t a g}}-p_{\left.\eta^{(}\right)}-p_{\ell}\right)^{2}$, where $p_{B_{t a g}}, p_{\eta^{\left({ }^{\prime}\right)}}$ and p_{ℓ} are the four-momenta of the $B_{t a g}, \eta^{\left({ }^{\prime}\right)}$, and charged lepton candidates, respectively.

The results for the $B \rightarrow \eta \ell \nu_{\ell}$ branching fractions are [6],

$$
\begin{align*}
& \mathscr{B}\left(B^{+} \rightarrow \eta \ell^{+} v_{\ell}\right)=\left(4.2 \pm 1.1_{\text {stat. }} \pm 0.3_{\text {syst. }}\right) \times 10^{-5} \\
& \mathscr{B}\left(B^{+} \rightarrow \eta^{\prime} \ell^{+} v_{\ell}\right)=\left(3.6 \pm 2.7_{\text {stat. }} \pm{ }_{-0.4}^{+0.3} \text { syst. }\right) \times 10^{-5} . \tag{3.1}
\end{align*}
$$

4. Search for $B \rightarrow \mu^{-} \bar{v}_{\mu}$ decays at the Belle Experiment

In the Standard Model, the branching fraction for the purely leptonic decay of a B meson is

$$
\begin{equation*}
\mathscr{B}\left(B^{-} \rightarrow \ell^{-} \bar{v}_{\ell}\right)=\frac{G_{F}^{2} m_{B} m_{\ell}^{2}}{8 \pi}\left(1-\frac{m_{\ell}^{2}}{m_{B}^{2}}\right)^{2} f_{B}^{2}\left|V_{u b}\right|^{2} \tau_{B} \tag{4.1}
\end{equation*}
$$

The signal B meson is reconstructed without the neutrino while the rest-of-event information is used in reconstructing the other B meson. Neural networks (NN) are used to separate signal and background components. A fit is performed between μ momentum in the c.m. frame, p_{μ}^{*} and the NN output. The resulting branching fraction is [9],

$$
\begin{align*}
\mathscr{B}\left(B^{+} \rightarrow \mu^{+} v_{\mu}\right) & =(6.46 \pm 2.22 \pm 1.60) \times 10^{-7} \\
\mathscr{B}\left(B^{+} \rightarrow \mu^{+} v_{\mu}\right) & \in[2.9,10.7] \times 10^{-7} \text { at } 90 \% \text { C.L. } \tag{4.2}
\end{align*}
$$

References

[1] I. Caprini, L. Lellouch and M. Neubert, Nucl. Phys. B 530 (1998) 153.
[2] C. G. Boyd, B. Grinstein, and R. F. Lebed, Phys. Rev. D 56, 6895 (1997).
[3] Belle Collaboration, A. Abdesselam et al., Measurement of CKM Matrix Element IVcbl from $B^{0} \rightarrow D^{*-} \ell^{+} v_{\ell}$, arXiv:1809.03290.
[4] Y. Amhis et al. (HFLAV Collab.), Eur. Phys. J. C 77, no. 12, 895 (2017).
[5] Collaboration (Vossen, A. et al.) Phys.Rev. D98 (2018) no.1, 012005 arXiv:1803.06444
[6] Phys.Rev. D96 (2017) no.9, 091102 arXiv:1703.10216
[7] N. Isgur and M. B. Wise, Phys. Rev. Lett. 66, 1130 (1991).
[8] P. Ball and G.W. Jones, J. High Energy Phys. 08, 25 (2007).
[9] Belle Collaboration (Sibidanov, A. et al.) Phys.Rev.Lett. 121 (2018) no.3, 031801 arXiv:1712.04123

[^0]: *Speaker.
 ${ }^{\dagger}$ On behalf of the Belle Collaboration.

