

New results on semileptonic *B* decays and CKM matrix elements $|V_{cb}|$ and $|V_{ub}|$ at Belle

Eiasha Waheed^{*†} School of Physics, University of Melbourne *E-mail:* waheede@student.unimelb.edu.au

Measurements of leptonic and semileptonic *B* meson decays are vital for the determination of CKM matrix elements $|V_{cb}|$ and $|V_{ub}|$. This article presents the measurements of semileptonic *B* decays $B^0 \rightarrow D^* \ell v_{\ell}$, $B \rightarrow D^{(*)} \pi \ell v$, $B \rightarrow \eta^{(')} \ell v_{\ell}$ and the leptonic decay $B \rightarrow \mu^- \bar{v}_{\mu}$. These analyses use entire Belle data set collected at the $\Upsilon(4S)$ resonance containing 772 million $B\bar{B}$ meson pairs.

39th International Conference on High Energy Physics 4-11 July 2018 Seoul, Korea

*Speaker. [†]On behalf of the Belle Collaboration.

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

Introduction

Semileptonic *B* decays are a direct source to measure the CKM matrix elements $|V_{cb}|$ and $|V_{ub}|$ which eventually leads to precision tests for electroweak decays of the Standard Model (SM). These decays also probe the *B* meson structure and hence, the QCD form factors. In the note, $|V_{cb}|$ is calculated from the exclusive semileptonic $B^0 \to D^* \ell v_{\ell}$ decay. To measure the inclusive $B \to X \ell v$ rate, we must understand exclusive components where *X* refers to the final states $B \to \eta \ell v$ and $B \to \eta' \ell v$. The decay rates depend upon calculations of hadronic contributions to the matrix element. In the case of pure leptonic *B* decays such as $B \to \mu v$, the decay rate is proportional to $|V_{ub}|$ which governs the coupling between the *u* and *b* quarks. $B \to D^{(*)} \pi \ell v$ is an important background for high-multiplicity semileptonic *B* decays such as $B \to D^* \ell v_{\ell}$ and $B \to D^* \tau v_{\tau}$, and hence a precise measurement of this decay is very important.

1. Measurement of $|V_{cb}|$ from $B^0 \rightarrow D^{*-}\ell^+ v_{\ell}$ decay

The decay is reconstructed in the following channel: $B^0 \to D^{*-}\ell^+ v_\ell$ where $D^{*-} \to \overline{D}^0 \pi^-$ and $\overline{D}^0 \to K^- \pi^+$. This channel offers the best purity for the $|V_{cb}|$ measurement, which is critical as it is limited by systematic uncertainty. The experimentally most precise determination of $|V_{cb}|$ is presented in [3]. The differential decay rate of $B \to D^*\ell v$ decay is proportional to $|V_{cb}|$, and helicity amplitudes. The kinematics of the decay is characterised by four variables, three angular observables θ_ℓ , θ_ν , χ and $w = \frac{m_B^2 + m_{D^*}^2 - q^2}{2m_B m_{D^*}}$. In the definition of w, q^2 is the momentum transfer between the *B* and the D^* meson, and m_B and m_{D^*} are their masses. Two different parameterisations of the hadronic transition form factors are used to extract $|V_{cb}|$: the model dependent Caprini-Lellouch-Neubert (CLN) form factor parameterisation [1] and the model independent Boyd-Grinstein-Lebed (BGL) parameterisation [2]. The theoretically favourable BGL parameterisation gives a higher value for $|V_{cb}|$, which is closer to the value measured by inclusive approach [4]. A simultaneous fit is performed to 1D projections of w, $\cos \theta_\ell$, $\cos \theta_\nu$ and χ to extract the form factor parameters and $|V_{cb}|$. The results from the fit are shown in Fig.[1]. The following values for $|V_{cb}|$ are extracted [3]:

$$|V_{cb}| = (38.7 \pm 0.2 \pm 0.6 \pm 0.5) \times 10^{-3} \text{ (CLN + LQCD) and}$$
 (1.1)

$$|V_{cb}| = (42.5 \pm 0.3 \pm 0.7 \pm 0.6) \times 10^{-3} (BGL + LQCD).$$
 (1.2)

Lepton flavour universality between electron and muon channels has been calculated as [3],

$$\frac{\mathscr{B}(B^0 \to D^{*+}e^- v_e)}{\mathscr{B}(B^0 \to D^{*+}\mu^- v_\mu)} = 1.01 \pm 0.01 \pm 0.03.$$
(1.3)

2. Measurement of the branching fraction of $B \rightarrow D^{(*)} \pi \ell \nu$ at Belle using hadronic tagging in fully reconstructed events

The process $B \to D^{(*)} \pi \ell \nu$ proceeds predominantly via $B \to D^{(**)} \ell \nu$, where D^{**} is an orbitally excited state of a charmed meson [7]. The decay is reconstructed by tagging one *B* meson in a hadronic mode. Since neutrinos cannot be detected in the Belle detector, the signal mode is reconstructed using rest-of-event information excluding the final state neutrino and its invariant

Figure 1: Results of the fit with BGL form factor parameterisation. The points with error bars are the on-resonance data. The histograms are, top to bottom, the signal component, $B \rightarrow D^{**}$ background, signal correlated background, uncorrelated background, fake ℓ component, fake D^* component and continuum.

mass, M_v , by employing kinematic constraints. The branching fraction is extracted by performing a fit to the spectrum of

$$M_{\nu}^{2} = \left((p_{e^{+}} + p_{e^{-}}) - p_{B_{tag}} - p_{D^{(*)}} - p_{\pi} - p_{\ell} \right)^{2} / c^{2},$$
(2.1)

where $(p_{e^+} + p_{e^-})$ is the sum of he four-momenta of the colliding beam particles. M_v^2 is fitted with a probability density function (PDF) derived from simulation to extract the yields. Then *B* is determined using the ratios of the fitted yields to MC and the branching fractions used in MC. Neutral and charged *B* mesons are fitted separately where a simultaneous fit is performed to $B \rightarrow D\pi \ell v$ and $B \rightarrow D^* \pi \ell v$. The branching fractions calculated are as follows [5],

$$\begin{aligned} \mathscr{B}(B^{+} \to D^{-} \pi^{+} \ell^{+} \mathbf{v}) &= (4.55 \pm 0.27_{stat.} \pm 0.39_{syst.}) \times 10^{-3} ,\\ \mathscr{B}(B^{0} \to \bar{D}^{0} \pi^{-} \ell^{+} \mathbf{v}) &= (4.05 \pm 0.36_{stat.} \pm 0.41_{syst.}) \times 10^{-3} ,\\ \mathscr{B}(B^{+} \to D^{*-} \pi^{+} \ell^{+} \mathbf{v}) &= (6.03 \pm 0.43_{stat.} \pm 0.38_{syst.}) \times 10^{-3} ,\\ \mathscr{B}(B^{0} \to \bar{D}^{*0} \pi^{-} \ell^{+} \mathbf{v}) &= (6.46 \pm 0.53_{stat.} \pm 0.52_{syst.}) \times 10^{-3} .\end{aligned}$$

$$(2.2)$$

3. Measurement of the decays in $B \to \eta \ell v_{\ell}$ and $B \to \eta' \ell v_{\ell}$ fully reconstructed events at Belle

Precise measurements of $B \to \eta \ell v_{\ell}$ and $B \to \eta' \ell v_{\ell}$ decay rates will improve the inclusive determination of $|V_{ub}|$ because lack of knowledge on all exclusive $B \to u \ell v$ decays are the primary

contributions to the systematic uncertainty [8]. The branching fraction for $\mathscr{B}(B^+ \to \eta \ell^+ v_\ell)$ and $\mathscr{B}(B^+ \to \eta' \ell^+ v_\ell)$ is calculated. The decay is reconstructed by identifying B_{tag} using the beamconstrained mass, $M_{bc} = \sqrt{E_{beam}^* - |\vec{p}_{B_{tag}}|^2}$, and the energy difference, $\Delta E = E_{B_{tag}}^* - E_{beam}^*$, where E_{beam}^* is the energy of the colliding beam particles in the c.m. frame and $E_{B_{tag}}^*$ and $\vec{p}_{B_{tag}}$ are the reconstructed energy and three-momentum of the B_{tag} candidate respectively. B_{sig} , is reconstructed using all charged particles and neutral clusters not associated with the B_{tag} candidate. The $B \to \eta^{(\prime)} \ell v_\ell$ yield is extracted from the distribution of the missing mass squared, defined as $M_{miss}^2 = (p_{B_{tag}} - p_{\eta^{(\prime)}} - p_\ell)^2$, where $p_{B_{tag}}$, $p_{\eta^{(\prime)}}$ and p_ℓ are the four-momenta of the B_{tag} , $\eta^{(\prime)}$, and charged lepton candidates, respectively.

The results for the $B \rightarrow \eta \ell v_{\ell}$ branching fractions are [6],

$$\mathscr{B}(B^{+} \to \eta \ell^{+} \nu_{\ell}) = (4.2 \pm 1.1_{\text{stat.}} \pm 0.3_{\text{syst.}}) \times 10^{-5},$$

$$\mathscr{B}(B^{+} \to \eta' \ell^{+} \nu_{\ell}) = (3.6 \pm 2.7_{\text{stat.}} \pm {}^{+0.3}_{-0.4} \text{syst.}) \times 10^{-5}.$$
 (3.1)

4. Search for $B \rightarrow \mu^- \bar{\nu}_{\mu}$ decays at the Belle Experiment

In the Standard Model, the branching fraction for the purely leptonic decay of a B meson is

$$\mathscr{B}(B^{-} \to \ell^{-} \bar{v}_{\ell}) = \frac{G_{F}^{2} m_{B} m_{\ell}^{2}}{8\pi} \left(1 - \frac{m_{\ell}^{2}}{m_{B}^{2}}\right)^{2} f_{B}^{2} |V_{ub}|^{2} \tau_{B}.$$
(4.1)

The signal *B* meson is reconstructed without the neutrino while the rest-of-event information is used in reconstructing the other *B* meson. Neural networks (NN) are used to separate signal and background components. A fit is performed between μ momentum in the c.m. frame, p_{μ}^{*} and the NN output. The resulting branching fraction is [9],

$$\mathscr{B}(B^+ \to \mu^+ \nu_{\mu}) = (6.46 \pm 2.22 \pm 1.60) \times 10^{-7},$$

$$\mathscr{B}(B^+ \to \mu^+ \nu_{\mu}) \in [2.9, 10.7] \times 10^{-7} \text{ at } 90\% \text{ C.L.}$$
(4.2)

References

- [1] I. Caprini, L. Lellouch and M. Neubert, Nucl. Phys. B 530 (1998) 153.
- [2] C. G. Boyd, B. Grinstein, and R. F. Lebed, Phys. Rev. D 56, 6895 (1997).
- [3] Belle Collaboration, A. Abdesselam et al., Measurement of CKM Matrix Element |Vcbl from $B^0 \rightarrow D^{*-}\ell^+ \nu_{\ell}$, arXiv:1809.03290.
- [4] Y. Amhis et al. (HFLAV Collab.), Eur. Phys. J. C 77, no. 12, 895 (2017).
- [5] Collaboration (Vossen, A. et al.) Phys.Rev. D98 (2018) no.1, 012005 arXiv:1803.06444
- [6] Phys.Rev. D96 (2017) no.9, 091102 arXiv:1703.10216
- [7] N. Isgur and M. B. Wise, Phys. Rev. Lett. 66, 1130 (1991).
- [8] P. Ball and G.W. Jones, J. High Energy Phys. 08, 25 (2007).
- [9] Belle Collaboration (Sibidanov, A. et al.) Phys.Rev.Lett. 121 (2018) no.3, 031801 arXiv:1712.04123