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We consider models where a massive spin-two resonance acts as the mediator between Dark Mat-
ter (DM) and the SM particles through the energy-momentum tensor. We examine the effective
theory for fermion, vector and scalar DM generated in these models and find novel types of DM-
SM interaction never considered before. We identify the effective interactions between DM and
the SM quarks when the mediator is integrated out, and match them to the gravitational form
factors relevant for spin-independent DM-nucleon scattering. We also discuss the interplay be-
tween DM relic density conditions, direct detection bounds and collider searches for the spin-two
mediator.
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1. Introduction

Dark Matter (DM) is known from many observations such as galaxy rotation curves, gravi-
tational lensing effects, Cosmic Microwave Background (CMB) and so on. Planck satellite has
observed the CMB and inferred that DM accounts for Ωh2 ' 0.1186 [1]. Among the DM experi-
ments, direct detections give strong bounds [2].

The effective field theory approach is suitable to the scattering for DM and nucleons in direct
detection. Moreover, the same effective interactions at the freeze-out of DM annihilation in the
early Universe and at the collider experiments are valid. Until now, the spin-0 and spin-1 mediators
have been mainly proposed.

We consider the spin-2 mediated dark matter model. The interactions are written through the
energy-momentum tensor [3, 4]. We identify the effective DM-nucleon scattering interactions by
integrating out the mediator and match from quarks to nucleons with gravitational form factors.
We examine the differential scattering event rate for DM-nucleon scattering with non-relativistic
effective operators and discuss the relic density condition of DM and experimental bounds.

2. Spin-2 mediator and dark matter

We introduce the interaction of a massive spin-2 particle (Gµν ) to the SM particle and DM
with the energy-momentum tensor, [3, 4]

Lint =−
cSM

Λ
G µνT SM

µν −
cDM

Λ
G µνT DM

µν . (2.1)

In this model, we consider the tree-level scattering amplitude between DM and SM quarks through
a massive spin-2 propagator Pµν ,αβ = (GµαGνβ +GναGµβ − 2

3 GµνGαβ )/2 with Gµν = ηµν −
(qµqν)/m2

G. The tensor Pµν ,αβ satisfies the traceless and transverse condition for on-shell medi-
ator [3]. The massive spin-2 particle is integrated out and that leads to the effective amplitude de-
scribed as traceless part and trace part of the energy-momentum tensors, with T̃µν = Tµν − 1

4 ηµνT ,

M =
icDMcSM

2m2
GΛ2

(
2T̃ DM

µν T̃ SM,µν − 1
6

T DMT SM). (2.2)

The energy momentum tensors for the SM particles and DM are introduced in the [3, 4, 7]. In this
paper, we consider only quark(ψ) coupling for SM part.

In the case of scalar operator, it takes scalar form factor while twist-2 operator takes gravita-
tional form factor

〈N(p2)|T ψ |N(p1)〉=−FS(q2)mN ūN(p2)uN(p1) (2.3)

〈N(p2)|T̃ ψ

µν |N(p1)〉= FT (q2)T̃ N
µν (2.4)

with q = p1− p2. In the case of the twist-2 operator of quarks, there can be more gravitational
form factors but others can be zero in a holographic description of QCD in a five-dimensional AdS
spacetime [8]. If we assume that the momentum transfer is zero, the scalar form factor becomes
just mass fraction of light quark in a nucleon, FS(0) = f N

T ψ
, and gravitational form factor becomes

the second moments of PDF, FT (0) = ψ(2)+ ψ̄(2) =
∫ 1

0 dx x(ψ(x)+ ψ̄(x)) [9, 10].
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3. Model constraints and results

The effective operators consist of the complete set of 4 Hermitian quantities, momentum
transfer(~q), relative perpendicular velocity(~v⊥≡~v+~q/µN), spin of DM(Sχ) and spin of nucleon(SN)

where µ is reduced mass of DM and nucleon. The non-relativistic effective operators are given in
[5]. In the case of fermion DM(χ), we note that the effective amplitude has the dimension-8 op-
erator due to the massive spin-2 mediator [7]. Also, we figure out the leading order of effective
Lagrangian for DM and nucleon scattering is independent of dark matter spin, where ONR

1 = 1,

Leff '
cDMcψm2

DMm2
N

2m2
GΛ2

(
6FT −

2
3

FS

)
ONR

1 . (3.1)
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Figure 1: The differential event rates in current(left) and mock(right) experiments for fermion DM

We compute the differential scattering event rates using the mathematica package called DM-
FormFactor [5, 6] taking benchmark points satisfying relic density and constraints. We use the
parameters for various current experiments and mock experiments for fermion DM case in Fig. 1.
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Figure 2: Parameter space with constraints where mDM = 150 GeV and cψ = cDM = 1.

Dark matter relic density is determined by annihilation cross sections for DM, DM→ ψψ̄ or
GG and the formulae are in [3, 4, 7]. In figure 2, we show the parameter space for mDM vs mG/Λ

with mG = 150 GeV (left) and mDM vs mG with Λ = 3 TeV where cψ = cDM = 1 in both sides. The
DM relic density over closes the universe in red, blue and orange for fermion, scalar and vector
DM, respectively. We consider XENON1T [11] with gray and ATLAS dijet bounds [12] with
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cyan. In particular, taking a zero momentum transfer for the DM-nucleon scattering, we obtain the
spin-independent scattering cross section with the results of eq. (2.3) and (2.4) [7, 13],

σ
SI
DM−A =

µ2
A

π

(
Z f DM

p +(A−Z) f DM
n
)2 (3.2)

with
f DM
n,p =

cDMmNmDM

4m2
GΛ2

(
∑

ψ=u,d,s,c,b
3cψ(ψ(2)+ ¯ψ(2))+ ∑

ψ=u,d,s

1
3

cψ f n,p
T ψ

)
. (3.3)

We also considered the light DM (mDM . 10 GeV) with light DM experiments in the paper [7] and
found that it is strongly constrained by DarkSide-50 experiment [14].

4. Conclusion

We have presented the effective interactions between DM and the SM quarks with spin-2
mediator. We have shown the differential event rates for DM-nucleon scattering and imposed
the bounds from direct detection, relic density condition as well as LHC dijet searches on to the
parameter space. In this work, we consider only quark coupling but gluon coupling contribution
will be shown in the future work.
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