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During the last years several Dark Sector Models have been proposed in order to address striking
astrophysical observations which fail standard interpretations.
In the minimal case a new vector particle, the so called dark photon or U-boson, is introduced,
with small coupling with Standard Model particles. Also, the existence of a dark Higgs boson
h’ is postulated, in analogy with the Standard Model, to give mass to the U-boson through the
Spontaneous Symmetry Breaking mechanism.
The experiment KLOE, working on the DAΦNE e+e- collider in Frascati, searched for the exis-
tence of the U-boson in a quite complete way, investigating several different processes and final
states. Tight limits on the model parameters have been set at 90%CL. Further improvements are
expected in terms of sensitivity and discovery potential with the new KLOE-2 detector working
on the improved DAFNE e+e- collider.
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1. Introduction

The Standard Model (SM) does not provide a definitive model of all elementary particles. In
particular, some astrophysical observations [1, 2, 3, 4, 5, 6, 7, 8] and the muon magnetic discrep-
ancy aµ are examples of possible physics beyond the SM. Extensions of the SM [9, 10, 11, 12, 13]
claim to explain the afore-mentioned anomalies by means of dark matter models, with a Weakly
Interacting Massive Particle (WIMP) belonging to a secluded gauge sector. The new gauge in-
teraction would be mediated by a new vector gauge boson, the U boson or dark photon, which
could interact with the photon via a kinetic-mixing term ε2. In the following, some of the U boson
searches, carried out with the KLOE detector, are described.

2. U-boson search in e+e−→Uγ with U → e+e−
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Figure 1: Exclusion limits on the kinetic-mixing parameter, ε2, from KLOE: KLOE1, KLOE2 and KLOE3

(in red) correspond to the combined limits from the analysis of φ → ηe+e−, e+e−→ µ+µ−γ and e+e−→
e+e−γ , respectively. The results are compared with the limits from E141, E774 [21], MAMI/A1 [22],
APEX [23], WASA [24], HADES [25], NA48/2 [26] and BaBar [27]. The grey band indicates the parameter
space favored by the (gµ −2) discrepancy.

The study of the reaction e+e− → Uγ , U → e+e− has the characteristic that allows to in-
vestigate the low mass region close to the di-electron mass threshold [18]. The signal of the U
boson would be then expected as a resonant peak in the di-electron invariant mass. Since no signal
was observed, the upper limit of the kinetic-mixing parameter as a function of mU was evaluated
with the CLs technique setting a limit on the U-boson signal at 90% confidence level Fig. 1. The
integrated luminosity corresponds to Lintegrated = 1.54fb−1 from the 2004-2005 data campaign.

3. U-boson search in e+e−→Uγ with U → π+π−

The leptonic channels investigated by KLOE loose sensitivity in the ρ −ω region due to
the dominant branching fraction into hadrons. The effective coupling of the U boson is pre-
dicted to be given by the product of the virtual-photon coupling and the kinetic-mixing parameter
ε2eFπ(q2) [17]. For this search, a total integrated luminosity of 1.93 fb−1 was analyzed [28]. No
signal was observed and a limit at the 90% CL was set on the coupling factor ε2 in the energy range
between 527 and 987 MeV with a larger sensitivity than previous limits in the ρ −ω region and
above, see Fig. 2.
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Figure 2: Left: 90% CL upper limit exclusion plot for ε2 as a function of the U-boson mass (KLOE(4)).
Right: 90% CL exclusion plot for ε2 as a function of the U-boson mass for the e+e−→Uγ process. The
U → µ+µ− limit (dashed line), the U → π+π− [28] constraint (solid line), and the U → µ+µ−, π+π−

combination (blue area) at full KLOE statistics are presented in comparison with the competitive limits by
BaBar [20], NA48/2 [26] and LHCb experiments [30]. The limits are shown together with previous KLOE
results as well as other experiments at the moment of publication.

4. Combined limit in the production of U decaying into µ+µ− and π+π−

A previous search for the U boson in the decay into µ+µ− [31] has been extended by using
the full KLOE statistics at Lint = 1.93fb−1, updating the analysis with a new estimate of the back-
ground, analogous to the one used for the U → π+π− search. This new search confirms the non
existence of U-boson signal in the di-muon invariant mass spectrum. To increase the sensitivity
in the region of the ρ −ω interference, both results on the 90% upper limit for µµ and ππ have
been combined, giving the up-to-date most stringent upper limit for the mixing parameter ε2 in
the U-boson mass region 519-987 MeV. The limit is shown in Fig. 2, together with the other most
competitive limits in the region.

5. Conclusions

The KLOE collaboration has extensively contributed to the U-boson searches. Up to now, no
evidence for a U boson was found and limits at the 90% confidence level were set on the kinetic-
mixing parameter ε2 in the mass range 5MeV < mU < 987MeV. In the meantime, a new data
campaign has been finalized with the KLOE-2 setup, which has collected more than 5fb−1 in the
past three years. The new setup and the enlarged statistics could further improve the current limits
on the dark coupling constant by at least a factor of two.
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