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1. Introduction

Ultra-relativistic nuclear collisions at the Large Hadron Collider (LHC) produce hot, dense
matter called the quark-gluon plasma, QGP [1, 2]. Hard-scattering processes in these collisions
produce jets that interact with the QGP, and the comparison of the rates and the characteristics of
these jets in heavy-ion and pp collisions provides information on its properties.

These proceedings present three complimentary measurements of the inclusive jet fragmenta-
tion functions [3], the fragmentation functions for photon-tagged jets [4], and the angular distribu-
tion of charged particles in and around inclusive jets [5]. Previous measurements of the transverse
jet profile [6] and the longitudinal fragmentation function [3,7–9] showed an excess of both low and
high momentum particles inside the jet compared to pp collisions, suggesting that the energy lost
by jets through the jet-quenching process is being transferred to soft particles within and around
the jet [10, 11]. Measurements of the yields of these particles as a function of their transverse mo-
mentum, as well as the distance from the jet axis have the potential to constrain the models of jet
energy loss processes in Pb+Pb collisions. The inclusive jet fragmentation function measurement
differs from the photon-tagged jet fragmentation function measurement in that the latter is done
to lower pjet

T , and probes a different ratio of quark to gluon jets. Additionally, the inclusive jet
measurement selects on jets that are already quenched, while the photon-tagged measurement uses
photons unaffected by the quark gluon plasma.

The fragmentation functions are measured as a function of the charged-particle transverse
momentum pT, and the charged-particle longitudinal momentum fraction with respect to the jet,
z≡ pT cos∆R/pjet

T , where ∆R =
√

∆η2 +∆φ 2 is the distance between the jet axis and the charged-
particle direction1. These observables are sensitive to the properties of the medium, and can be
expressed as

D(pT) =
1

Njet

dnch

dpT
, D(z) =

1
Njet

dnch

dz
(1.1)

The angular distribution of charged particles as a function of the distance from the jet cone is
given by

D(pT,r) =
1

Njet

1
2πr

d2nch(r)
drdpT

(1.2)

Here Njet is the total number of jets; nch is the number of charged particles; 2πr is the circum-
ference of the annulus at a given distance r from the jet axis, and dr is the width of the annulus.

The ratios of the distributions measured in Pb+Pb and pp collisions allows quantifying the
modification in yields from the pp to the Pb+Pb system.

RD(pT) =
D(pT)Pb+Pb

D(pT)pp
, RD(z) =

D(z)Pb+Pb

D(z)pp
, RD(pT,r) =

D(pT,r)Pb+Pb

D(pT,r)pp
(1.3)

1ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of
the detector, and the z-axis along the beam pipe. The x-axis points from the IP to the center of the LHC ring, and the
y-axis points upward. Cylindrical coordinates (r,φ) are used the transverse plane, φ being the azimuthal angle around
the z-axis. The pseudorapidity is defined in terms of the polar angle θ as η = −ln tan(θ/2). ∆R =

√
(∆η)2 +(∆φ)2

gives the angular distance between two objects with relative differences ∆η and ∆φ in pseudorapidity and azimuth
respectively.
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2. Datasets

The measurements described in these proceedings use 25 pb−1 of
√

s = 5.02 TeV pp data and
0.49 nb−1 of √sNN = 5.02 TeV Pb+Pb data collected in 2015. The data were recorded using the
ATLAS calorimeter, inner detector, trigger, and data acquisition systems [12].

The performance of the detector and analysis procedure was evaluated using 1.8 ×107 sim-
ulated 5.02 TeV POWHEG+PYTHIA8 [13, 14] pp hard-scattering events, generated using the A14
tune [15] and the NNPDF23LO PDF set [16], for pp and 1.8 ×107 5.02 TeV hard-scattering dijet
events generated with POWHEG+PYTHIA8 overlaid on top of events from the enhanced minimum-
bias Pb+Pb data sample for Pb+Pb. In both samples, the detector response is simulated using
GEANT4 [17, 18].

In Pb+Pb collisions, the event centrality reflects the overlap area of the two colliding nuclei
and is characterized by ΣEFCal

T , the total transverse energy deposited in the FCal [19]. The six
centrality intervals used in these analyses are defined according to successive percentiles of the
ΣEFCal

T distribution obtained in minimum-bias collisions, ordered from the most central (highest
ΣEFCal

T ) to the most peripheral (lowest ΣEFCal
T ) collisions: 0–10%, 10–20%, 20–30%, 30–40%, 40–

60%, 60–80%. A weight is assigned to each MC event such that the event sample obtained from
the simulation has the same ΣEFCal

T distribution as in data.
Further details on the datasets used for the inclusive jet fragmentation functions, photon-tagged

fragmentation functions, and the angular charged-particle distribution can be found in [3], [4],
and [5] respectively.

3. Data Analysis

The jets used in all three analyses are reconstructed using the anti-kt algorithm, run on calori-
metric towers of size ∆η×∆φ = 0.1×0.1, with the radius parameter set to R = 0.4 [20]. Photon
reconstruction uses a procedure described in [21], and is based on energy clusters in the electro-
magnetic calorimeter. Photon identification is done based on shapes of the electromagnetic shower
in the calorimeter [22], selecting those clusters that are compatible with single photon shower pat-
terns.

Reconstructed tracks are associated with a reconstructed jet and are corrected for a variety of
effects including tracking efficiency, underlying event (UE), fakes, bin migration due to jet energy
and track momentum resolution, as well as effects from the finite jet and track angular resolutions.
Full details on the analyses procedure for these measurements can be seen in [3–5].

All three measurements incorporate a two-dimensional Bayesian unfolding procedure [23]
as implemented in the RooUnfold package [24], to remove the effects of the bin migration due
to the jet energy and track-momentum resolution. This is done because the calorimetric jet en-
ergy response depends on the fragmentation pattern of the jet [25]. Using the MC samples, four-
dimensional response matrices are created using the generator-level and reconstructed pjet

T , and
the generator-level and reconstructed charged-particle pch

T . Separate unfolding matrices are con-
structed for pp data and each centrality in Pb+Pb collisions. A separate one-dimensional Bayesian
unfolding is applied to correct the measured pjet

T spectra that are used in the normalization of the
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fragmentation functions and the angular distributions. The entire procedure allows for direct com-
parison not only between the three measurements, but also to theory predictions.

The performance of the full analysis procedure is validated in MC events where the entire cor-
rection procedure is performed using reconstructed jets and tracks, and the results are compared to
the generator-level distributions. These deviations in this comparison are included in the systematic
uncertainties.

4. Results

This section presents the fragmentation function measurements for both inclusive and photon-
tagged jets, as well as the charged-particle angular distributions in and around inclusive jets. The
modifications between the Pb+Pb and pp systems are also shown.

Figure 1 shows the D(pT), RD(pT), and RD(z)distributions for inclusive jets, as well as their
dependence on the collision energy and the pjet

T [3]. It can be seen from Fig. 1b that there is an
enhancement of particle yields at low and hight pT, with a reduction of intermediate pT particles.
Furthermore, this modification is quantitatively consistent with that at√sNN= 2.76 TeV [7–9]. Fig-
ure 1c suggests that the soft particle excess in central Pb+Pb collisions exhibits a much smaller pjet

T
dependence for the D(pT) ratios than for the D(z) ratios. No pjet

T dependence is observed at high
z for jets with pjet

T < 400 GeV, as seen in Fig. 1d. The pjet
T dependence shows scaling with z for

hard fragments and scaling with pT for soft fragments; this could suggest that the excess of high z
particles is related to the fragmentation mechanism, and the excess of soft particles is governed by
effects from the QGP [3].

Figure 2 shows the D(pT) and RD(pT) distributions for photon-tagged jets [4]. It can be seen
from Fig. 2a that photon-tagged jets in pp collisions have more high pT particles in the final state
than inclusive jets. This is consistent with observations in [26–28], that quark jets fragment harder
than gluon jets, since the photon-tagged jets have a higher quark fraction than inclusive jets. Fig. 2b
shows that the minimum in the RD(pT) ratio for photon-tagged jets in central Pb+Pb is shifted to
larger pT as the centrality increases, with the high pT region giving a ratio consistent with unity.
These modifications (in central Pb+Pb) are larger than those in inclusive jets, with an additional
relative suppression at high pT, and a counter-balancing enhancement at low pT. For 30-80%
Pb+Pb, the RD(pT) distribution for both inclusive and photon-tagged jets is qualitatively similar.

Figure 3 shows the angular distribution of charged particles as a function of r in pp and Pb+Pb
collisions, as well as the modification from the pp to the Pb+Pb system [5]. A broadening (nar-
rowing) of the D(pT,r) distribution for pT < 4 GeV (pT > 4 GeV) particles inside the jet in central
Pb+Pb collisions compared to pp collisions is observed. Figure 3b shows that the modification
to the angular distribution in Pb+Pb is above (below) unity at all r for charged particles with
pT < 4 GeV (pT > 4 GeV), and increases (decreases) for r < 0.3, being approximately constant
thereafter. The pjet

T dependence to the RD(pT,r) distributions can be seen in Fig. 3c, where low
pT (1.6 - 2.5 GeV) particles show a pjet

T dependent enhancement between 0.1 < r < 0.25. No
significant pjet

T dependence is observed for high pT (6.3 - 10.0 GeV) particles. The size of the mod-
ifications in Pb+Pb compared to pp monotonically depends on the collision centrality, and can be
seen in Fig. 3d.
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FIG. 6. Fragmentation functions, D(z) (left) and D(pT) (right), in pp collisions measured in five p
jet
T ranges from 126 to 398 GeV. The

vertical bars on the data points indicate statistical uncertainties, while the shaded bands indicate systematic uncertainties. In most cases, the
statistical uncertainties are smaller than the marker size.

shown in Fig. 3 for pp collisions and 0– 10% central Pb+Pb
collisions. The magnitude of the unfolding effect varies as a
function of p

jet
T , pch

T , and centrality. The effect of the unfolding
is similar in pp and Pb+Pb collisions at low z and pT, but
for higher-momentum particles within the jet, the effect of the
unfolding in pp and Pb+Pb collisions differs by up to 25%
between the two collision systems for 126 < p

jet
T < 158 GeV.

This difference is due to UE fluctuations, which lead to poorer
jet energy resolution in Pb+Pb collisions than in pp collisions.

With increasing p
jet
T , the effect of UE fluctuations decreases;

for 251 < p
jet
T < 316 GeV the effect of the unfolding is similar

in Pb+Pb and pp collisions at all value of z and pT. The effect
of the unfolding is larger at high z and pT due to the steepness
of the fragmentation function near z = 1. The shaded boxes
in Fig. 3 show the size of systematic uncertainties associated
with the unfolding which originate from the sensitivity of the
unfolding to the shape of input MC distributions, as described
in the next section.
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(a) The inclusive jet fragmentation functions D(pT),
in Pb+Pb collisions measured in six centrality
classes.
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FIG. 18. RD(z) (left) and RD(pT ) (right) for 126– 158 GeV jets for collision energies of 5.02 TeV (this analysis) and 2.76 TeV [16]. The
vertical bars on the data points indicate statistical uncertainties while the boxes indicate systematic uncertainties.

The shapes of the RD(z) and RD(pT) distributions are similar
for all centralities: inside the jets; the yields of particles with
low pT or z are enhanced; there is a reduction for particles
with intermediate pT or z; and the yields of particles with
high pT or z are enhanced. This is qualitatively consistent
with previous measurements of jet fragmentation at

√
sNN =

2.76 TeV [14– 16]; a quantitative comparison is provided in
Sec. VIII. The magnitudes of the deviations of the ratios from
unity decrease with decreasing collision centrality. In the most
central collisions, the size of the enhancement is as large as
70% at low pT or z and 30% at high pT or z. The depletion of
charged-particle yields at intermediate pT and z is as large as
20%. In some centrality andp

jet
T ranges there is a decrease of the

fragmentation functions at the highest z values. In this region
the statistical and systematic uncertainties are the largest; more
precise measurements are needed to determine if a significant
decrease exists.

Figures 14 and 15 show the RD(z) distributions for jets in
the most central and most forward rapidity intervals, 0.0– 0.3
and 1.2– 2.1, respectively, for the six centrality intervals used
in this analysis and for four p

jet
T intervals: 126– 158, 158–

200, 200– 251, and 251– 316 GeV. Figures 16 and 17 show
RD(pT ) distributions for the same jet rapidity, centrality, and
p

jet
T ranges. In all rapidity ranges, the RD(z) and RD(pT )

distributions have the same qualitative shape and centrality
dependence as the rapidity-inclusive results presented above.

VIII. DISCUSSION

In this section, the results from the previous section are
further discussed and compared to theoretical models.

In order to make a direct comparison with measurements at
2.76 TeV, Fig. 18 overlays the RD(z) and RD(pT ) distributions
measured in 2.76 TeV collisions [16] on those obtained in this

FIG. 19. RD(z) (left) and RD(pT ) (right) ratios for three p
jet
T ranges: 126– 158 GeV (circles), 200– 251 GeV (diamonds), and 316– 398 GeV

(crosses). The statistical uncertainties are shown as bars and the systematic uncertainties as outlined boxes.
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(b) RD(pT) for inclusive jets for √sNN = 5.02 TeV
and√sNN = 2.76 TeV.
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FIG. 18. RD(z) (left) and RD(pT ) (right) for 126–158 GeV jets for collision energies of 5.02 TeV (this analysis) and 2.76 TeV [16]. The
vertical bars on the data points indicate statistical uncertainties while the boxes indicate systematic uncertainties.

The shapes of the RD(z) and RD(pT) distributions are similar
for all centralities: inside the jets; the yields of particles with
low pT or z are enhanced; there is a reduction for particles
with intermediate pT or z; and the yields of particles with
high pT or z are enhanced. This is qualitatively consistent
with previous measurements of jet fragmentation at

√
sNN =

2.76 TeV [14–16]; a quantitative comparison is provided in
Sec. VIII. The magnitudes of the deviations of the ratios from
unity decrease with decreasing collision centrality. In the most
central collisions, the size of the enhancement is as large as
70% at low pT or z and 30% at high pT or z. The depletion of
charged-particle yields at intermediate pT and z is as large as
20%. In some centrality andp

jet
T ranges there is a decrease of the

fragmentation functions at the highest z values. In this region
the statistical and systematic uncertainties are the largest; more
precise measurements are needed to determine if a significant
decrease exists.

Figures 14 and 15 show the RD(z) distributions for jets in
the most central and most forward rapidity intervals, 0.0–0.3
and 1.2–2.1, respectively, for the six centrality intervals used
in this analysis and for four p

jet
T intervals: 126–158, 158–

200, 200–251, and 251–316 GeV. Figures 16 and 17 show
RD(pT ) distributions for the same jet rapidity, centrality, and
p

jet
T ranges. In all rapidity ranges, the RD(z) and RD(pT )

distributions have the same qualitative shape and centrality
dependence as the rapidity-inclusive results presented above.

VIII. DISCUSSION

In this section, the results from the previous section are
further discussed and compared to theoretical models.

In order to make a direct comparison with measurements at
2.76 TeV, Fig. 18 overlays the RD(z) and RD(pT ) distributions
measured in 2.76 TeV collisions [16] on those obtained in this

FIG. 19. RD(z) (left) and RD(pT ) (right) ratios for three p
jet
T ranges: 126–158 GeV (circles), 200–251 GeV (diamonds), and 316–398 GeV

(crosses). The statistical uncertainties are shown as bars and the systematic uncertainties as outlined boxes.
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(c) The pjet
T dependence to the RD(pT) distributions.
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FIG. 18. RD(z) (left) and RD(pT ) (right) for 126–158 GeV jets for collision energies of 5.02 TeV (this analysis) and 2.76 TeV [16]. The
vertical bars on the data points indicate statistical uncertainties while the boxes indicate systematic uncertainties.

The shapes of the RD(z) and RD(pT) distributions are similar
for all centralities: inside the jets; the yields of particles with
low pT or z are enhanced; there is a reduction for particles
with intermediate pT or z; and the yields of particles with
high pT or z are enhanced. This is qualitatively consistent
with previous measurements of jet fragmentation at

√
sNN =

2.76 TeV [14–16]; a quantitative comparison is provided in
Sec. VIII. The magnitudes of the deviations of the ratios from
unity decrease with decreasing collision centrality. In the most
central collisions, the size of the enhancement is as large as
70% at low pT or z and 30% at high pT or z. The depletion of
charged-particle yields at intermediate pT and z is as large as
20%. In some centrality andp

jet
T ranges there is a decrease of the

fragmentation functions at the highest z values. In this region
the statistical and systematic uncertainties are the largest; more
precise measurements are needed to determine if a significant
decrease exists.

Figures 14 and 15 show the RD(z) distributions for jets in
the most central and most forward rapidity intervals, 0.0–0.3
and 1.2–2.1, respectively, for the six centrality intervals used
in this analysis and for four p

jet
T intervals: 126–158, 158–

200, 200–251, and 251–316 GeV. Figures 16 and 17 show
RD(pT ) distributions for the same jet rapidity, centrality, and
p

jet
T ranges. In all rapidity ranges, the RD(z) and RD(pT )

distributions have the same qualitative shape and centrality
dependence as the rapidity-inclusive results presented above.

VIII. DISCUSSION

In this section, the results from the previous section are
further discussed and compared to theoretical models.

In order to make a direct comparison with measurements at
2.76 TeV, Fig. 18 overlays the RD(z) and RD(pT ) distributions
measured in 2.76 TeV collisions [16] on those obtained in this

FIG. 19. RD(z) (left) and RD(pT ) (right) ratios for three p
jet
T ranges: 126–158 GeV (circles), 200–251 GeV (diamonds), and 316–398 GeV

(crosses). The statistical uncertainties are shown as bars and the systematic uncertainties as outlined boxes.
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(d) The pjet
T dependence to the RD(z) distributions.

Figure 1: Inclusive jet fragmentation function measurements. The vertical bars (shaded bands)
indicate statistical (systematic) uncertainties. Figures are from [3].

5. Conclusions

These proceedings present a measurement of the fragmentation functions for inclusive and
photon-tagged jets, as well as the angular distribution of charged particles around the jet axis.

Centrality dependence modifications to the inclusive jet fragmentation functions are observed
in Pb+Pb collisions when compared to those in pp collisions, with the magnitude of the modifi-
cation increasing with increasing collisions centrality. A comparison of the modifications of the
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Figure 3: Fragmentation function in pp events as a function of charged particle pT (left) or z (right). Results are
shown for the measured distribution for photon-tagged jets (black), the analogous generator-level distribution in
P����� 8 events (green), and for the measured distribution for inclusive jets in a similar jet pT range (red). The
shaded bands correspond to the total systematic uncertainties on the data.

and 0.49 nb�1 of Pb+Pb collision data at psNN = 5.02 TeV with the ATLAS detector at the LHC. The
kinematic selections are chosen to ensure a topology with a single leading jet with large quark jet fraction
for study. In pp collisions, the photon–tagged jet fragmentation functions are systematically harder than
those measured in data for inclusive jets, consistent with the expectation based on this flavor di�erence.
Furthermore, they are reasonably well described by event generator simulations. In Pb+Pb collisions, the
fragmentation pattern of photon–tagged jets is observed to be modified through interaction with the hot
nuclear medium. In 30–80% Pb+Pb events, the modification pattern and overall magnitude is consistent
with that for inclusive jets at a similar pT range. However, jets in photon–tagged events are systematically
more strongly modified in 0–30% Pb+Pb events, to a degree not observed in inclusive jets. Since previous
studies by ATLAS of the rapidity and pT-dependence of fragmentation function modification suggest
that the flavor-dependence of such e�ects is small, these di�erences may arise in part from the di�erent
initial jet pT distributions selected in each analysis. Thus these results raise interesting questions about
the interplay of the flavor and kinematic selection of jets with their overall energy loss and modification
in high-energy nucleus–nucleus collisions.
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Figure 2: Fragmentation function for jets azimuthally balanced with a high-pT photon as a function of charged
particle pT (left) or the charged particle pT to jet pT ratio z (right). Results are shown for pp collisions and for
30–80% and 0–30% central Pb+Pb collisions. Blue bands show the total systematic uncertainties, while the vertical
bars (which are smaller than the marker size in most cases) show the statistical uncertainties.

events appear qualitatively di�erent: the minimum in the Pb+Pb/pp ratio appears shifted to larger z or pT
values, and the large z or pT region is consistent with no enhancement.

The ratios of the FFs for jets azimuthally balanced with a photon are also compared in Figure 4 to those for
inclusively-selected jets in a similar pT range measured inpsNN = 2.76 TeV Pb+Pb and pp collisions [14].
Although the compared measurements are at a di�erent center of mass energy, preliminary results from
measurements of inclusive jet FF modification at 5.02 TeV [52] have shown that they are compatible
with those at 2.76 TeV within uncertainties. In peripheral collisions, the overall modification pattern
for photon-tagged jets is quantitatively similar to that observed for inclusive jets. However, in central
collisions, the modifications in the structure of photon-tagged jets are more pronounced, showing an
additional relative suppression at high z or pT, and counter-balancing enhancement at low z or pT.

As another way to explore the relative change in the FF between di�erent Pb+Pb event classes, the
ratio between central and peripheral Pb+Pb collisions is shown in Figure 5. The ratio is consistent with
a decreasing linear function of log(z) or log(pT), crossing unity at z ⇡ 0.1 or pT ⇡ 10 GeV. The
analogous ratio is also shown for inclusive jets in Pb+Pb events, which is consistent with unity within
uncertainties. Thus, the data indicate that in increasingly central collisions, jets in photon-tagged events
are also increasingly modified, in contrast to what is observed for inclusive jets.
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(a) The photon-tagged jet fragmentation functions D(pT) in pp data (black) and PYTHIA 8 MC (green) and
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Figure 3: Fragmentation function in pp events as a function of charged particle pT (left) or z (right). Results are
shown for the measured distribution for photon-tagged jets (black), the analogous generator-level distribution in
P����� 8 events (green), and for the measured distribution for inclusive jets in a similar jet pT range (red). The
shaded bands correspond to the total systematic uncertainties on the data.

and 0.49 nb�1 of Pb+Pb collision data at psNN = 5.02 TeV with the ATLAS detector at the LHC. The
kinematic selections are chosen to ensure a topology with a single leading jet with large quark jet fraction
for study. In pp collisions, the photon–tagged jet fragmentation functions are systematically harder than
those measured in data for inclusive jets, consistent with the expectation based on this flavor di�erence.
Furthermore, they are reasonably well described by event generator simulations. In Pb+Pb collisions, the
fragmentation pattern of photon–tagged jets is observed to be modified through interaction with the hot
nuclear medium. In 30–80% Pb+Pb events, the modification pattern and overall magnitude is consistent
with that for inclusive jets at a similar pT range. However, jets in photon–tagged events are systematically
more strongly modified in 0–30% Pb+Pb events, to a degree not observed in inclusive jets. Since previous
studies by ATLAS of the rapidity and pT-dependence of fragmentation function modification suggest
that the flavor-dependence of such e�ects is small, these di�erences may arise in part from the di�erent
initial jet pT distributions selected in each analysis. Thus these results raise interesting questions about
the interplay of the flavor and kinematic selection of jets with their overall energy loss and modification
in high-energy nucleus–nucleus collisions.
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events appear qualitatively di�erent: the minimum in the Pb+Pb/pp ratio appears shifted to larger z or pT
values, and the large z or pT region is consistent with no enhancement.
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a decreasing linear function of log(z) or log(pT), crossing unity at z ⇡ 0.1 or pT ⇡ 10 GeV. The
analogous ratio is also shown for inclusive jets in Pb+Pb events, which is consistent with unity within
uncertainties. Thus, the data indicate that in increasingly central collisions, jets in photon-tagged events
are also increasingly modified, in contrast to what is observed for inclusive jets.
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red points). Hatched bands and vertical bars show the total systematic and statistical uncertainties, respectively, for
each measurement.

12

 [GeV]
T
p

1 10 210

) Tp
 ra

tio
 o

f D
(

0.6

0.8

1

1.2

1.4

1.6

1.8

 PreliminaryATLAS
pp30-80% Pb+Pb / 

-tagged jets 5.02 TeVγ

inclusive jets 2.76 TeV
(30-40%)

 [GeV]
T
p

1 10 210

) Tp
 ra

tio
 o

f D
(

0.6

0.8

1

1.2

1.4

1.6

1.8

 PreliminaryATLAS
pp0-30% Pb+Pb / 

-tagged jets 5.02 TeVγ

inclusive jets 2.76 TeV
(0-10%)

z

2−10 1−10 1

 ra
tio

 o
f D

(z
)

0.6

0.8

1

1.2

1.4

1.6

 PreliminaryATLAS
pp30-80% Pb+Pb / 

-tagged jets 5.02 TeVγ

inclusive jets 2.76 TeV
(30-40%)

z

2−10 1−10 1

 ra
tio

 o
f D

(z
)

0.6

0.8

1

1.2

1.4

1.6

 PreliminaryATLAS
pp0-30% Pb+Pb / 

-tagged jets 5.02 TeVγ

inclusive jets 2.76 TeV
(0-10%)

Figure 4: Ratio of the fragmentation function for jets azimuthally balanced with a high-pT photon, between that
in 30–80% Pb+Pb collisions and pp collisions (left panels) and 0–30% Pb+Pb collisions and pp collisions (right
panels). Results are shown as a function of charged particle pT (top panels) or z (bottom panels), for photon-tagged
jets (this measurement, black points) and for inclusive jets in psNN = 2.76 TeV Pb+Pb collisions [7, 14] (see text,
red points). Hatched bands and vertical bars show the total systematic and statistical uncertainties, respectively, for
each measurement.

12

(b) The RD(pT) distributions for inclusive and photon-tagged jets for central and peripheral collisions.

Figure 2: Photon-tagged jet fragmentation function measurements. The vertical bars (shaded
bands) indicate statistical (systematic) uncertainties. Figures are from [4].

inclusive jet fragmentation functions as a function of pjet
T shows whether the size of modifications

scales with charged-particle z (indicating fragmentation effects) or with pT (indicating a medium
effect). The photon tagging of jets explores the dependence of the fragmentation on the flavor com-
position, with these jets having a higher quark to gluon fraction than inclusive jets. Photon-tagged
jets in central collisions also show greater modifications than compared to inclusive jets. Since the
pT dependence of the fragmentation function modification [3] suggest that the flavor-dependence
is small, the differences may arise from a bias in the initial selection of the jets based on pjet

T [4].
The modifications in the angular distribution of charged particles within and around jets suggest
that the energy lost by jets, through the jet quenching process, is being transferred to particles with
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Figure 3: Measurements of the angular distribution of charged particles. The vertical bars (shaded
bands) indicate statistical (systematic) uncertainties. Figures are from [5].

pT < 4.0 GeV at larger radial distances. This is qualitatively consistent with theoretical calculations
[10, 11, 29–33]. These ATLAS measurements, along with other measurements of the jet RAA [34]

and dijet asymmetry [35], are essential to constraining the physics of jet quenching.
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