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By extracting the beam with a bent crystal or by using an internal gas target, the multi-TeV proton
and lead LHC beams allow one to perform the most energetic fixed-target experiments ever and
to study pp, pd and pA collisions at

√
sNN = 115 GeV and Pbp and PbA collisions at

√
sNN =

72 GeV with high precision and modern detection techniques. Such studies would address open
questions in the domain of the nucleon and nucleus partonic structure at high-x, quark-gluon
plasma and, by using longitudinally or transversally polarised targets, spin physics. In this paper,
we will review the technical solutions to obtain a high-luminosity fixed-target experiment at the
LHC and will discuss their possible implementations with the ALICE and LHCb detectors.
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1. Physics motivations

Fixed-target experiments offer many advantages having the versatility of polarised and nuclear
targets and allowing to reach high-luminosity with dense and long target. The AFTER@LHC
project aims at demonstrating the physics opportunities and the technical implementations of a
high-luminosity fixed-target experiment using the LHC beams. The 7 TeV proton and 2.76 A TeV
lead beams allow one to reach a center-of-mass energy per nucleon pair of

√
sNN = 115 GeV and

√
sNN = 72 GeV with a center-of-mass rapidity boost of 4.8 and 4.2 units, respectively. These

energies correspond to an energy domain between SPS and nominal RHIC energies. The large
rapidity boost implies that the mid- to forward rapidity region in the center of mass frame (ycms≥ 0)
lies within 1 degree in the laboratory frame and that the backward rapidity region (ycms≤ 0) is easily
accessible by using standard experimental techniques or existing LHC experiments such as ALICE
or LHCb. Thus the fixed-target mode at high-luminosity presents unique opportunities to access
the very backward rapidity domain and therefore the high-x frontier, where x is the momentum
fraction of the parton struck in the target nucleon or nucleus.

The physics motivations of a fixed-target experiment at the LHC are three-fold: advance our
understanding of the high-x gluon, antiquark and heavy-quark content in the nucleon and nucleus,
unravel the spin structure of the nucleon, and study the quark-gluon plasma (QGP) created in
heavy-ion collisions towards large rapidity [1, 2, 3, 4, 5] (see also [6] for more details). In the
high-x programme, one could extract parton distribution functions (PDFs), poorly known in this
kinematic regime, by using Drell-Yan measurements to probe the light quark, and open heavy-
flavour measurements to probe the gluon and charm content of the nucleon. In a nuclear target, one
could reveal the EMC effect which is far from understood and determine whether such an effect
exists also for the gluon case. With a transversally polarised target, one could access information
on orbital motion of partons bound into hadrons by measuring the Sivers effect. This effect can be
probed for light quark with Drell-Yan, or for gluon with open heavy-flavour production. Finally in
Pb-A collisions at

√
sNN = 72 GeV, the medium created is expected to have a low baryon chemi-

cal potential and a temperature approximately 1.5 times higher than the critical temperature of the
phase transition between a hadron gas and a QGP [7]. At such temperature, the excited states of
ϒ are expected to melt into the QGP [8]. In addition, measurements of particle yields and their
anisotropies as a function of rapidity and system size would allow one to scan the phase-transition
region. In the following, we will concentrate on the technical implementations and projects un-
der investigation in ALICE and LHCb. For the physics topics, the reader can refer to the recent
review [5] as well as to other contributions from the Hard Probes 2018 conference [9].

2. Possible technical implementations

Several techniques are promising to obtain a fixed-target experiment at the LHC. LHCb has
pioneered the use of gaseous fixed-target with the SMOG system [10, 11, 12], originally designed
for luminosity calibration. In that case, the gas density is low since the gas is not confined to a
specific region and there is no dedicated pumping system. Also only noble gases have been used
so far and for limited running time periods. Higher density gas targets are possible with the gas-jet
system or by using a storage cell. With those target setups, H, D and 3He gases could be injected
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as well as polarised gases. Solid targets can also provide high luminosity fixed-target experiment.
The beam halo can interact directly with the target inserted inside the beam pipe. Another more
promising solution, that has the advantage to be more parasitic to the main beams, is to deviate
the beam halo on an internal solid target by using a bent crystal. In that case, the proton and
lead fluxes are expected to be approximately 5.108 p/s and 2.105 Pb/s and would allow one to
obtain large luminosities with a target of a few millimeter thickness. With this technique, two
solutions can be envisioned: either the beam is extracted and a new beam line is created, or the
beam is used on a target located in an existing cavern (beam splitting). The first solution requires
however civil engineering and could be achieved only over a longer timescale. The second solution
is possible provided that the deflected beam halo is then absorbed upstream of the detector. The
implementations of the gas and solid target solutions at the LHC were investigated in [5] and are
currently discussed in the Physics Beyond Collider working groups at CERN, in particular with
the aim at evaluating the effect on the LHC beams [13]. As we will see in the following, these
possible technical implementations would allow one to set up a fixed-target programme with the
current LHC detectors, ALICE and LHCb.

3. ALICE and LHCb in a fixed-target running mode

Most of the physics cases outlined in [5] can be covered with the ALICE and LHCb detectors
if they are coupled with a fixed target setup. The rapidity boost implies the particles are mostly
produced in the forward direction. The left panel of Fig. 1 shows the rapidity acceptance of the
ALICE and LHCb detectors in the collider and fixed-target modes where one can see, in the latter
case, the effect of the rapidity boost. The rapidity coverages are also compared to the ones of
the STAR and PHENIX detector at RHIC. One of the main advantage of the fixed-target mode at
the LHC is that particles can be easily detected at large angles corresponding to very large values
of negative ycms. In a fixed-target mode, LHCb detectors give access to a wide rapidity range
starting from mid-rapidity in the center of mass. In ALICE, the central barrel (full square) covers
the very backward center-of-mass rapidity and the muon spectrometer (dashed square) covers a
rapidity interval towards mid-rapidity. Table 1 shows the yearly integrated luminosities that could

6− 4− 2− 0 2 4 6
Center-of-mass rapidity

STAR (Collider)

PHENIX (Collider)

LHCb (Collider)

LHCb (Fixed Target)

ALICE (Collider)

ALICE (Fixed Target) Muon Det.

E-M Det.

Full PID Det.

lab
η

0 2 4 6 8 10

la
b

η
dN

ch
/d

M
B

1/
N

200

400
600

800

1000

1200

1400

1600
1800

2000 EPOS simulations, centrality: 0-10%
=72 GeVNNsFixed-target mode, 

Pb beam, Pb target
Pb beam, Xe target
Pb beam, Ar target

=5.5 TeVNNsCollider mode, 
Pb beam, Pb beam

Figure 1: Left panel: Comparison of the rapidity coverage of the ALICE and LHCb detectors at LHC, and
the STAR and PHENIX detectors at RHIC. For ALICE and LHCb, the acceptance is shown in collider and
fixed-target modes with a target position at the nominal Interaction Point for a 7 TeV proton beam. Right
panel: Averaged charged-particle multiplicity as a function of the pseudorapidity in the laboratory frame for
various heavy-ion systems.
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be delivered to ALICE and LHCb for various target types with the proton and lead beams. We
considered as limitations to the obtained luminosities either the technical solution or the detector
data-taking-rates capabilities. More details can be found in [5]. In ALICE, 1 MHz and 50 kHz
of minimum bias data-taking rates were considered as maxima for the proton and lead beams,
respectively. In LHCb, a maximum of 40 MHz was considered for the proton beam while a rate
of approximately 200 kHz in the Pb-Xe case is expected to be sustainable by the experiment. The
resulting rates are large and comparable to the ones expected in the collider mode for Run3 and 4.
In the case of the lead beam with a nuclear target, the detector should be able to cope with high

Target p beam Pb beam p beam Pb beam
Technique Type

∫
LALICE

∫
LALICE

∫
LLHCb

∫
LLHCb

H↑ 43 pb−1 0.56 nb−1 43 pb−1 0.56 nb−1

Gas jet H2 0.26 fb−1 28 nb−1 10 fb−1 118 nb−1

Xe 7.7 pb−1 8.1 nb−1 0.31 fb−1 23 nb−1

H↑ 0.26 fb−1 28 nb−1 9.2 fb−1 118 nb−1

Storage cell H2 0.26 fb−1 28 nb−1 10 fb−1 118 nb−1

Xe 7.7 pb−1 8.1 nb−1 0.31 fb−1 30 nb−1

C (658 µm) 37 pb−1 − − −
Bent crystal C (5 mm) − 5.6 nb−1 280 pb−1 5.6 nb−1

and solid target W (184 µm) 5.9 pb−1 − − −
W (5 mm) − 3.1 nb−1 160 pb−1 3.1 nb−1

Table 1: Summary of the achievable integrated yearly luminosities for some technical implementations
and targets with the ALICE and LHCb detectors in the fixed target mode, accounting for the data-taking-rate
capabilities (see text). The integrated luminosity corresponds to a LHC year with time duration of tp = 107 s
and tPb = 106 s for the proton and lead beams, respectively.

occupancy in order to reconstruct high multiplicity events. The right panel of Fig. 1 compares the
pseudorapidity dependence of the charged particle multiplicity of different systems in the fixed-
target mode at

√
sNN = 72 GeV with the one of the Pb-Pb collider mode at

√
sNN = 5.5 TeV, in

the case of the 10% more central collisions. These distributions are obtained from EPOS [14, 15]
simulations. In the fixed-target mode, the average charged multiplicity does not exceed the one of
the LHC collider mode. The ALICE detectors can reconstruct events at such high-multiplicity. In
LHCb, the event reconstruction is so far limited to the 50% less central events in Pb-Pb collisions
at
√

sNN = 5 TeV.
Three projects are under investigation in LHCb: an internal solid target coupled to a crystal

with a second crystal close to the target for EDM/MDM experiments [16], a storage cell attached
to the VELO (SMOG2) that will provide two order of magnitude higher gas pressure with respect
to SMOG [17], and a polarised storage cell target for spin physics [17]. The installation of the
SMOG2 system is foreseen in LS2. In ALICE, the internal solid target coupled to a bent crystal is
investigated with a target location inside the L3 solenoid magnet few meters upstream of IP2 [18].

4. Conclusion

Many physics opportunities are offered by a high-luminosity fixed-target experiment at the
LHC with detectors covering a wide rapidity range. The achievable luminosities would permit
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decisive measurements both on quark and gluon sensitive probes such as Drell-Yan, open heavy-
flavour and quarkonium production. With transversally polarised targets, it will be possible to
study the quark and gluon Sivers functions by measuring the single transverse spin asymmetries
for Drell-Yan, open and hidden heavy-flavour production. The lead beam interaction on a nuclear
target would allow one to study the quark-gluon plasma in an energy range between the SPS and
the top RHIC energy over a wide rapidity range. Various technical implementations are possible
and some of them are promising to obtain high luminosities, such as the internal gas target or
the internal solid target coupled with the beam halo deflection by a bent crystal. In LHCb, three
projects are under investigation (crystal and internal solid target, unpolarised and polarised gas
targets). In particular, SMOG2 will be installed in LS2 and will provide unpolarised gas target at
high density. In ALICE, the crystal and internal solid target solution is currently being investigated.
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