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1. Introduction

In order to complement the current program of the LHC experiments, the LHC beam can be
used to run in a fixed target mode. A fixed target experiment has a number of advantages that were
discussed in detail within the scope of the AFTER@LHC proposal [1, 2], here we just mention
the main ones: (i) access to the far backward c.m.s. region, (ii) possibility of using various targets
including 3He, (iii) target polarisation giving access to measurements of single spin asymmetry
at large momentum fractions. For the details on the design and technical implementation of the
experiment we refer the reader to the full report [2] we just want to highlight here that scenarios
using either a new detector or one of the existing detectors (LHCb or ALICE) were consider; in both
cases allowing for running alongside the current collider program of the LHC. A three main physics
subjects have been studied (i) the high fractional momentum (x) frontier in nucleons and nuclei,
(ii) spin content of the nucleons, and (iii) heavy-ion physics. In this contribution we concentrate on
the first one – the high-x frontier – for the results on the remaining topics we refer the reader to the
report [2] and to other contributions from the Hard Probes 2018 conference [3, 4, 5, 6].

Scenarios using a 7 TeV proton beam and a 2.76 TeV lead beam were considered. In the fixed
target mode these correspond to the nucleon-nucleon center of mass energy (c.m.s.) of

√
sNN = 115

GeV in the proton case and
√

sNN = 72 GeV in the lead case. The high-energy of the beams
translates into a big pseudorapidity shift between the laboratory and c.m.s. frames which is 4.8 for
the proton beam and 4.3 for the lead beam. This means that we obtain a backward detector covering
yc.m.s. < 0 and negative Feynman x (xB). The acceptance of the LHCb and ALICE detectors in the
fixed target mode is shown in Fig. 1 in comparison with the collider mode and experiments at
RHIC, showing clearly the uniqueness of such a setup.

6− 4− 2− 0 2 4 6
Center-of-mass rapidity

STAR (Collider)

PHENIX (Collider)

LHCb (Collider)

LHCb (Fixed Target)

ALICE (Collider)

ALICE (Fixed Target) Muon Det.

E-M Det.

Full PID Det.

Figure 1: Comparison of the kinematic coverages of the ALICE and LHCb detectors at the LHC and the
STAR and PHENIX detectors at RHIC. For ALICE and LHCb, the acceptance is shown in the collider
and the fixed-target modes with a target position at the nominal Interaction Point (IP) for a 7 TeV proton
beam. The "Full PID Det." label indicates detector with particle identification capabilities, "E-M Det." - an
electromagnetic calorimeter, "Muon Det." - a muon detector. Figure from [2].
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2. High x frontier

We review here selected projections of the impact of the fixed target experiment on proton and
nuclear parton distribution functions (PDFs). The projections have been performed for the case of
proton beam colliding either with protons or heavy targets in both cases leading to nucleon-nucleon
c.m.s. energy of

√
sNN = 115 GeV. We assume integrated luminosity of 10 fb−1 in the pp case and

100 pb−1 in proton-nucleus case (where we considered the Xe and W nuclei). The projections were
done using either the profiling [7, 8] or the reweighting method [9, 10].

We start with the Drell-Yan lepton pair production process. In the pp case, pseudo-data for ra-
pidity distributions in selected bins of the lepton pair invariant mass: Mµµ ∈ [4,5], [5,6], [6,7], [7,8]
GeV and Mµµ > 10.5 GeV have been used; assuming the acceptance of the LHCb detector:
2< ηlab < 5 (giving−2.8< yc.m.s. < 0.2) and pµ

T > 1.2 GeV. The results of using these pseudo-data
on the uncertainties of the CT14 PDFs [11] is presented in Figs. 2a and 2b for the case of u and d
distributions. We can see a huge reduction of uncertainties in the high-x region for the u quark and
a moderate reduction for the d quark; a smaller decrease is also observed for the light sea quarks.
Additionally, a sizable decrease of the PDF uncertainties is also found in the intermediate and small
x region which can be seen e.g. in Fig. 15 in [2].
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Figure 2: (a,b) Impact of the Drell-Yan lepton pair production in pp collisions at
√

sNN = 115 GeV on
the PDF uncertainties. The u and d PDFs from CT14 [11] are plotted as a function of x at a scale Q = 1.3
GeV before and after including AFTER@LHCb pseudo-data using the profiling method. (c,d) nCTEQ15
nPDFs [12] before and after the reweighting using RDY

pW and RDY
pXe AFTER@LHCb pseudo-data. The plots

show ratio of nPDFs for tungsten (W) and the corresponding uncertainties compared to the central value at
the scale Q = 1.3 GeV. Figure from [2].

In the nuclear case pseudo-data for the nuclear modifications of rapidity distributions in pXe
and pW collisions have been used; also assuming the acceptance of the LHCb detector and using
the same bins in the lepton pair invariant mass. In Figs. 2c and 2d we present the impact of
these pseudo-data on the nCTEQ15 [12] nuclear PDFs (nPDFs) in case of tungsten for u and d
distributions. In both cases a very substantial reduction of the uncertainties is observed. We should
highlight here that in reality the nPDF uncertainties are typically underestimated and in practice
this reduction is even larger.

As a second example we concentrate on the nuclear gluon distribution which is one of the least
known nPDFs. One example of data that can be used in order to learn about the gluon nPDF comes
from heavy flavour production. The collider LHC data for heavy flavour production in both pp and
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pPb collisions have been already used to constrain the small-x gluon [13, 14, 15], here we show that
the corresponding data collected in the fixed target mode can also be used to study the high-x gluon
distribution. In Fig. 3 we present results of reweighting of the nCTEQ15 nPDFs using pseudo-data
for the production of heavy flavour mesons (D0,J/ψ,B±,ϒ(1S)) in pXe collisions at

√
sNN = 115

GeV using the HELAC-Onia framework [16, 17]. We can see that in all cases it allows for a huge
reduction of the nPDF uncertainties of the gluon distribution at high-x, even taking into account the
relatively large scale uncertainties.
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Figure 3: nCTEQ15 nPDFs before and after the reweighting using RpXe pseudo-data for (a) D0, (b) J/ψ ,
(c) B+, (d) ϒ(1S) production at AFTER@LHCb. The plots show ratios RXe

g of gluon densities encoded in
nCTEQ15 over that in CT14 PDFs at scale Q = 2 GeV. Figure from [2].
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Figure 4: Impact of the uncertainties on the charm content of the proton on the D0 yield as a function of pT

compared to the projected uncertainties from the measurement of the D0 yield in pp collisions at
√

sNN = 115
GeV in the LHCb acceptance. The orange and blue zones correspond to BHPS [19] and sea-like [20] intrinsic
charm (IC) models. The filled areas correspond to yields computed with up to 〈xcc̄〉= 2%(resp. 2.4%) and
the hashed areas up to 〈xc+c̄〉 = 0.57%(resp. 1.1%). The dashed red lines indicate the factorization scale
uncertainty on the “no-IC” yield. Figure from [2].

The last example we present in this proceedings is the possible impact of the fixed target
AFTER@LHC experiment on the heavy quark PDFs in the proton. In particular, its possibilities
to confirm or strongly constrain the models of the non-perturbative (intrinsic) charm that typically
predict a substantial component of the heavy quark distribution located at high-x [18]. In Fig. 4
we show the relative yield uncertainty for inclusive D0 meson production for three rapidity bins
(2 < ylab < 3, 3 < ylab < 4, 4 < ylab < 5) as a function of the transverse momentum of the D0

meson. As can be seen, even for pT . 15 GeV the expected precision of the measurement will
clearly allow to considerably constrain the intrinsic-charm model, by up to an order magnitude.
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3. Summary

We have presented a selection of results from [2] showing the impact of a fixed target experi-
ment with LHC beams on our current knowledge of proton and nuclear PDFs. From these results
it is clear that such an experiment would be invaluable in learning about large-x distributions of
quarks and gluons in both proton and nuclei. It would provide a unique opportunity for studying
the high-x regime which is hard to access in a collider mode of the LHC and at the same time it is
important for answering many important questions like: (i) understanding the confinement proper-
ties of QCD, (ii) understanding the origin of the EMC effect, (iii) discriminating between different
models of hadronic structure, (iv) testing the existence of intrinsic heavy quarks in the proton, (v)
reducing the uncertainty on prompt neutrino fluxes, or (vi) improving our knowledge of parton lu-
minosities at existing and future hadron colliders (LHC, HE-LHC, FCC-hh) which will help with
searches of new heavy particles. The full results of the studies from the AFTER@LHC group can
be found in [2] in particular topics related to spin physics and heavy ion collisions which were not
covered here.
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