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1. Introduction

The recent advances in the study of the transverse momentum dependent distributions (TMD)
allow to unravel the structure of hadrons in great detail. Through the so called factorization the-
orems we construct expressions for cross sections of interesting processes as Drell-Yan or semi-
inclusive-deep-inelastic-scattering (SIDIS) [1, 2, 3] in terms of TMD parton distribution functions
(TMDPDF) and fragmentation functions (TMDFF). Higher order calculations in QCD for these
TMD distributions are important to increase the predictive power of the framework [4, 5] in the
description of the available experimental data. Increasing the perturbative order in the calculations
of TMD distributions allows better theoretical uncertainties.

The efforts to increase the perturbative order of the elements of TMD factorization theorems
at next-to-next-to-leading-order (NNLO) have given us the evolution of the TMD distributions up
to two and three loops [6, 7, 8]. The unpolarized TMD distribution matchings of TMDPDFs and
TMDFFs have been studied up to two loops respectively in [9, 10, 11] and in [11].

The status of the polarized distributions is less advanced. We focus on the two transvesely
polarized distributions: transversity and pretzelosity TMDs. Their matching up to two loops is
evaluated in [12]. These two distributions are very interesting because they have been recently
subjet of experimental, phenomenological and theoretical investigations. The relevant data for
these extractions come mainly from HERMES [13] and COMPASS [14].

The TMD transversity distribution has been extracted using SIDIS data in e.g. [15] with Gaus-
sian models without taking into account the TMD evolution. In these cases the size of the theoret-
ical errors is difficult to estimate. In order to provide this information we need to introduce higher
order perturbative information as the calculation of the matching coefficients we are going to recall
in this proceeding. For the unpolarized TMD distribution this analysis has been recently done in [5]
decreasing the size of the theoretical uncertainties substantially. In principle a similar analysis can
be done also for the polarized distribution that we have studied.

For the pretzelosity distribution we outline here the recent analysis made in [16, 17]. In these
analyses a practically null value for this distribution is obtained that agrees with our analysis done
at up to two loops in [18, 12].

2. Transversely polarized distributions

The transversity and pretzelosity TMD distributions are derived from a general transversely
polarized TMD distribution,

Φ
[iσα+γ5]
q←h (x,b) =

1
2
∫ dλ

2π
e−ixp+λ 〈P,S|T̄{q̄(λn+b)W̃ T

n (λn+b)} iσα+γ5 T{W̃ T †
n (0)q(0)}|P,S〉, (2.1)

where the index α is transverse and n is a light-like vector. We use the standard notation for the
light-cone components of a general vector vµ = nµv−+ n̄µv++gµν

T vν (with n2 = n̄2 = 0,n · n̄ = 1).
The collinear Wilson lines W T

n (x) are rooted at the position x and continued to the infinity along
the direction n. Its staple contour results in the rapidity divergences, unique feature of TMDs. They
are renormalized by the proper rapidity renormalization factor R, which is built from the TMD soft
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factor [19, 1, 3, 6]

S(b) = Trcolor
Nc
〈0|
[
ST †

n S̃T
n̄
]
(b)
[
S̃T †

n̄ ST
n

]
(0)|0〉, (2.2)

where ST
n stands for soft Wilson lines (for a precise definition of collinear and soft Wilson lines

see e.g. [11]). In the regularization scheme for rapidity divergences that we use (modified δ -
regularization) the R factor can be written easily as R = S−1/2. This fact makes possible to write a
renormalized TMD distribution in a simple way

Φ
ren(x,b; µ,ζ ) = Z(µ,ζ |ε)R(b,µ,ζ |ε,δ )Φunsub.(x,b|ε,δ ), (2.3)

where Z renormalizes the UV divergences and R the rapidity ones.
The transversely polarized TMD distribution is parameterized in terms of four TMDPDFs. In
position space it stands as

Φ
[iσα+γ5]
q←h (x,b) = sα

T h1(x,b)− iλbαMh⊥1L(x,b) (2.4)

+iεαµ

T bµMh⊥1 (x,b)+
M2b2

2

(
gαµ

T
2

+
bαbµ

b2

)
sT µh⊥1T (x,b),

where sT is the transverse part of the hadron spin, λ the helicity, M a hadron mass scale and b
is the transverse position, Fourier conjugated quantity of the transverse momentum, qT . To study
the leading twist matching of these distributions we use the operator product expansion (OPE) that
allows the expansion of the TMD operator in powers of b. The evaluation of the matrix elements
of the small-b OPE for our TMD operator results in the following expression

Φ
[iσα+γ5]
q←h (x,b) = ∑

f

[
Cαβ

q← f ;tw−2(b)⊗hβ ;tw−2
f←h

]
(x) (2.5)

+bβ ∑
f

[
Cαβγ

q← f ;tw−3(b)⊗hγ;tw−3
f←h

]
(x)+ ... ,

where h are collinear distributions, C are matching coefficients functions and ⊗ symbol stands for
the Mellin convolution in the momentum fractions. Extracting particular tensors one can find the
matching of individual TMDPDFs onto collinear functions. In particular the tensor structures of
transversity (h1) and pretzelosity (h⊥1T ) appears in the twist-2 matching, and the other distribution
can be produced only at twist-3 [20, 21]. The only PDF that contribute to the matching of the
twist-2 distributions is the collinear transversity distribution.
The twist-2 coefficient functions have structures ∼ gαβ

T and ∼ bαbβ/b2. So, the natural decompo-
sition of this function is

Cαβ

q← f ;tw−2(x,b) = gαβ

T δCq← f (x,Lµ)+

(
gαβ

T
2(1− ε)

+
bαbβ

b2

)
δ
⊥Cq← f (x,Lµ), (2.6)

where ε is the parameter of dimensional regularization (d = 4− 2ε) and Lµ = ln
(

µ2b2

4e−2γE

)
is the

only way in which the matching coefficients depend on the transverse position. As the pieces of
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the decomposition do not mix each other, we find individual matching for each TMD distributions,

hq
1(x,b) =

∫ 1

x

dy
y ∑

f=q,q̄
δCq← f

(
x
y
,Lµ

)
h f

1(y)+O(b2), (2.7)

h⊥,q1T (x,b) =
2

b2M2

∫ 1

x

dy
y ∑

f=q,q̄
δ
⊥Cq← f

(
x
y
,Lµ

)
h f

1(y)+O(b2). (2.8)

3. Renormalization group equations and evolution

The dependence on the renormalization scales of the distributions studied is given by a pair of
evolution equations.

µ2 d
dµ2 Φren(x,b; µ,ζ ) = γF (µ,ζ )

2 Φren(x,b; µ,ζ ), (3.1)

ζ
d

dζ
Φren(x,b; µ,ζ ) =−D(µ,b)Φren(x,b; µ,ζ ). (3.2)

A detailed study of this system of equations is presented in [5]. The anomalous dimensions are
defined via the corresponding renormalization constants and their values are know up to three-loop
order. They satisfy the integrability condition

ζ
d

dζ

γ i
F(µ,ζ )

2
= µ

2 d
dµ2

(
−D i(µ,b)

)
=−Γi(µ)

2
, (3.3)

which guaraties the existence of a common solution for the equations (3.1, 3.2). Here Γi is the so
called cusp anomalous dimension. In impact parameter space a common solution of these equations
is found straightforwardly

Φ
ren(z,b,QR,µ f ,ζ f ) = exp

[∫
P

(
γ

i
F(µ,ζ )

dµ

µ

)
−D i(µ,b)

dζ

ζ

]
Φ

ren(z,b,QR,µi,ζi). (3.4)

Thus, the so called TMD evolution kernel is defined as

Ri [b;(µ f ,ζ f )→ (µi,ζi)] = exp
[∫

P

(
γ

i
F(µ,ζ )

dµ

µ

)
−D i(µ,b)

dζ

ζ

]
. (3.5)

where the integration is performed along a path P in the (µ,ζ )-plane. In principle, the in-
tegration can be done on an arbitrary path P and the solution is independent on it, thanks to the
integrability condition in Eq. 3.3. But, at a finite perturbation theory order the condition of the
Eq. 3.3 is violated by the next perturbative order. As a consecuence, the expression of the evolu-
tion factorn in dependent on the chosen integration paths. The restoration of path-independence is
studied in [5]. Here we show one of the path independent solutions that is written as

Ri[b;(µ f ,ζ f )→ (µi,ζi); µ0] = exp
[∫

µ f
µi

dµ

µ
γ

q
F(µ,ζ f )−

∫
µi
µ0

dµ ′

µ ′ ln
(

ζ f
ζi

)](
ζ f
ζi

)−Dq
pert(µ0,b)−gkb

2

,(3.6)

where Dq
pert is the perturbative expression for the rapidity anomalous dimension and gK is a

parameter that takes into account the purely non-perturbative part of the evolution factor. In the
Fig. 1, the evolution factor for the quark case (i = q) is shown up to NNLO for different energies
of current experiments.

3



P
o
S
(
S
P
I
N
2
0
1
8
)
0
5
5

Twist-2 matching of TMDs at NNLO in QCD Daniel Gutierrez-Reyes

(a) Belle II CM energy (b) Lep CM energy

Figure 1: Plots of the TMD evolution kernel at next-to-leading-order (NLO) and next-to-next-to-leading-
order (NNLO) for center of mass energies related to Belle II experiment (a) and to Lep experiment (b)

4. Matching of the transversity distribution at NNLO

The calculation of the matching coefficients for the transversity distribution is straighforward
from the unpolarized one done in [11]. The main difference is the non-mixing with gluons. This
calculation stands as an explicit evidence that the factorization theorems of spin dependent TMD
distributions work properly. We check explicitly up to NNLO that the UV and rapidity renormal-
ization constants are exactly the same that the ones used for the unpolarized TMD distribution
that enters in spin independent factorization theorems. The evolution equations for spin dependent
TMD distributions and for the coefficients that result from its matching onto integrated PDFs have
the same form that the ones for the unpolarized TMD, see e.g. [12].
In perturbation theory the matching coefficients can be written as

δC f← f ′(x,Lµ , lζ ) =
∞

∑
n=0

an
s

n+1

∑
k=0

n

∑
l=0

Lk
µ ll

ζ
δC(n;k,l)

f← f ′ (x), (4.1)

where as = g2/(4π)2 and lζ = ln(µ2/ζ ) are the rapidity logarithms. The coefficients δC(n;k,l) with
k+ l > 0 are fixed order-by-order with the help of the renormalization group above-named. Thus,
the only part that cannot be calculated in this way are the coefficients δC(n;0,0). We show here the
result up to NLO,

δC[0]
f← f ′ = δC(0;0,0)

f← f ′ (x) = δ f f ′δ (1− x), (4.2)

δC(1;0,0)
f← f ′ (x) =−CFζ2δ f f ′δ (1− x). (4.3)

that agrees with the results obtained in [22, 18, 23].
The new feature for the NNLO calculation is the mixing with the anti-quark operator. The re-
sults are quite lengthly and we omit them in this proceeding. To see their explicit expressions see
Eqs. (4.9, 4.10) (and Eqs. (6.9, 6.10) for the fragmentation case) of [12]. One interesting feature
of the NNLO transversity matching coefficients is its relation with the unpolarized ones. Both
coefficients can be written as

C(2;0,0)(x) = P[1](x)F1(x)+F2(x)+δ (1− x)F3, (4.4)
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where P[1](x) is LO DGLAP kernel of the corresponding PDF. The function F1(x) and the constant
F3 are exactly the same for unpolarized and transversity cases. That behavior is expected because
these parts are the ones proportional to 1/(1− x) and δ (1− x) contributions, respectively. They
come from diagrams where the quark interact with the Wilson lines and are insensitive to the
polarization structure of the operator. The only different part is the non-singular (at x→ 1) function
F2(x).

5. Matching of the pretzelosity distribution at NNLO

The calculation of the matching of the TMD pretzelosity distribution over the integrated
transversity PDF is similar to the one of the transversity TMD distribution. The one-loop result
was given in [18],

δ
⊥C[1]

q←q(x,b) =−4CFBε
Γ(−ε)x̄ε

2 = 0+O(ε), (5.1)

where x̄ = 1− x and B = b2/4. We see that the result is ε-supressed, as we anticipated before.
To calculate the matching coefficient at NNLO we have to obtain the contribution of the pretzelosity
TMDPDF at NNLO and the contribution of the matching of the pretzelosity 1-loop coefficient
convoluted with the integrated transversity PDF. It is interesting to organize the result of the sum
of the NNLO diagrams by the different color factors that appear,

δ
⊥

Φ
[2]
f← f ′ =C2

FAF +CF

(
CF −

CA

2

)
AFA +

CFCA

2
AA +CFN f AN , (5.2)

because can see major cancellations between them, taking into account that AFA = AA +

O(ε),AN = O(ε). So, the renormalized pretzelosity TMDPDF does not depend on CA and can
be written as

h⊥[2]1T,q←q =−4C2
F (x̄(3+4lnx̄)+4xlnx)+O(ε), (5.3)

h⊥[2]1T,q←q̄ = 0. (5.4)

We find that the equation for the matching of the pretzelosity TMD onto the transversity inte-
grated PDF reads as

δ⊥C[2]
q←q(x,b) = h[2]1T,q←q(x,b)−

[
δ⊥C[1]

q←q(b)⊗δ f [1]q←q

]
(x) (5.5)

δ⊥C[2]
q←q̄(x,b) = 0. (5.6)

The result for the convolution term is the same that for the coefficient in (5.3). Thus,

δ
⊥C[2]

q← f (x,b) = 0+O(ε), (5.7)

where f = q, q̄.
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6. Conclusions

In this article the matching of the two transversely polarized TMD distributions at leading
twist is shown. These results give us the first calculation of a polarized TMD (trasversity) at the
same level of accuracy of the unpolarized TMD distribution. As is discussed in [4], to increase
the perturbative precision in the matching coefficients allows to decrease the theoretical errors and
gives us more accurate information of the nonperturbative contributions. The improvement in the
theory for polarized distributions shown in this article opens the path to phenomenological analyses
with the same level of precision that the obtained for unpolarized TMD.

For another part, this calculation checks explicitly the spin independence of the TMD fac-
torization theorems up to NNLO. Further on, this calculation stands also for a check of the spin
independence of the double-scale evolution of the TMD distributions.

For the pretzelosity, an unexpected null result is found up to two-loop level. Some signs to
stand that the twist-2 matching of this distribution is zero at all orders in perturbation theory are
encountered, But these statements are not a complete demonstration for the nullity of this matching
at all orders. We conjecture that the twist-2 matching of the pretzelosity function is zero at all
orders and only the first non-zero matching appears at twist-4 level.

References

[1] J. Collins, Foundations of perturbative QCD. Cambridge University Press, 2013.

[2] M. G. Echevarria, A. Idilbi and I. Scimemi, Soft and Collinear Factorization and Transverse
Momentum Dependent Parton Distribution Functions, Phys. Lett. B726 (2013) 795–801,
[1211.1947].

[3] A. Vladimirov, Structure of rapidity divergences in soft factors, JHEP 04 (2018) 045,
[1707.07606].

[4] I. Scimemi and A. Vladimirov, Analysis of vector boson production within TMD factorization, Eur.
Phys. J. C78 (2018) 89, [1706.01473].

[5] I. Scimemi and A. Vladimirov, Systematic analysis of double-scale evolution, JHEP 08 (2018) 003,
[1803.11089].

[6] M. G. Echevarria, I. Scimemi and A. Vladimirov, Universal transverse momentum dependent soft
function at NNLO, Phys. Rev. D93 (2016) 054004, [1511.05590].

[7] Y. Li and H. X. Zhu, Bootstrapping Rapidity Anomalous Dimensions for Transverse-Momentum
Resummation, Phys. Rev. Lett. 118 (2017) 022004, [1604.01404].

[8] A. A. Vladimirov, Soft-/rapidity- anomalous dimensions correspondence, Phys. Rev. Lett. 118 (2017)
062001, [1610.05791].

[9] S. Catani and M. Grazzini, Higgs Boson Production at Hadron Colliders: Hard-Collinear Coefficients
at the NNLO, Eur. Phys. J. C72 (2012) 2013, [1106.4652].

[10] T. Gehrmann, T. Lubbert and L. L. Yang, Transverse parton distribution functions at
next-to-next-to-leading order: the quark-to-quark case, Phys. Rev. Lett. 109 (2012) 242003,
[1209.0682].

6

http://dx.doi.org/10.1016/j.physletb.2013.09.003
https://arxiv.org/abs/1211.1947
http://dx.doi.org/10.1007/JHEP04(2018)045
https://arxiv.org/abs/1707.07606
http://dx.doi.org/10.1140/epjc/s10052-018-5557-y
http://dx.doi.org/10.1140/epjc/s10052-018-5557-y
https://arxiv.org/abs/1706.01473
http://dx.doi.org/10.1007/JHEP08(2018)003
https://arxiv.org/abs/1803.11089
http://dx.doi.org/10.1103/PhysRevD.93.054004
https://arxiv.org/abs/1511.05590
http://dx.doi.org/10.1103/PhysRevLett.118.022004
https://arxiv.org/abs/1604.01404
http://dx.doi.org/10.1103/PhysRevLett.118.062001
http://dx.doi.org/10.1103/PhysRevLett.118.062001
https://arxiv.org/abs/1610.05791
http://dx.doi.org/10.1140/epjc/s10052-012-2013-2, 10.1140/epjc/s10052-012-2132-9
https://arxiv.org/abs/1106.4652
http://dx.doi.org/10.1103/PhysRevLett.109.242003
https://arxiv.org/abs/1209.0682


P
o
S
(
S
P
I
N
2
0
1
8
)
0
5
5

Twist-2 matching of TMDs at NNLO in QCD Daniel Gutierrez-Reyes

[11] M. G. Echevarria, I. Scimemi and A. Vladimirov, Unpolarized Transverse Momentum Dependent
Parton Distribution and Fragmentation Functions at next-to-next-to-leading order, JHEP 09 (2016)
004, [1604.07869].

[12] D. Gutierrez-Reyes, I. Scimemi and A. Vladimirov, Transverse momentum dependent transversely
polarized distributions at next-to-next-to-leading-order, JHEP 07 (2018) 172, [1805.07243].

[13] HERMES collaboration, A. Airapetian et al., Effects of transversity in deep-inelastic scattering by
polarized protons, Phys. Lett. B693 (2010) 11–16, [1006.4221].

[14] COMPASS collaboration, C. Adolph et al., Collins and Sivers asymmetries in muonproduction of
pions and kaons off transversely polarised protons, Phys. Lett. B744 (2015) 250–259, [1408.4405].

[15] M. Anselmino, M. Boglione, U. D’Alesio, S. Melis, F. Murgia and A. Prokudin, Simultaneous
extraction of transversity and Collins functions from new SIDIS and e+e- data, Phys. Rev. D87 (2013)
094019, [1303.3822].

[16] C. Lefky and A. Prokudin, Extraction of the distribution function h⊥1T from experimental data, Phys.
Rev. D91 (2015) 034010, [1411.0580].

[17] B. Parsamyan, Measurement of target-polarization dependent azimuthal asymmetries in SIDIS and
Drell-Yan processes at COMPASS experiment, PoS QCDEV2017 (2018) 042.

[18] D. Gutierrez-Reyes, I. Scimemi and A. A. Vladimirov, Twist-2 matching of transverse momentum
dependent distributions, Phys. Lett. B769 (2017) 84–89, [1702.06558].

[19] M. G. Echevarria, A. Idilbi and I. Scimemi, Factorization Theorem For Drell-Yan At Low qT And
Transverse Momentum Distributions On-The-Light-Cone, JHEP 07 (2012) 002, [1111.4996].

[20] I. Scimemi and A. Vladimirov, Matching of transverse momentum dependent distributions at twist-3,
Eur. Phys. J. C78 (2018) 802, [1804.08148].

[21] I. Scimemi, A. Tarasov and A. Vladimirov, Collinear matching for Sivers function at next-to-leading
order, 1901.04519.

[22] A. Bacchetta and A. Prokudin, Evolution of the helicity and transversity
Transverse-Momentum-Dependent parton distributions, Nucl. Phys. B875 (2013) 536–551,
[1303.2129].

[23] M. G. A. Buffing, M. Diehl and T. Kasemets, Transverse momentum in double parton scattering:
factorisation, evolution and matching, JHEP 01 (2018) 044, [1708.03528].

7

http://dx.doi.org/10.1007/JHEP09(2016)004
http://dx.doi.org/10.1007/JHEP09(2016)004
https://arxiv.org/abs/1604.07869
http://dx.doi.org/10.1007/JHEP07(2018)172
https://arxiv.org/abs/1805.07243
http://dx.doi.org/10.1016/j.physletb.2010.08.012
https://arxiv.org/abs/1006.4221
http://dx.doi.org/10.1016/j.physletb.2015.03.056
https://arxiv.org/abs/1408.4405
http://dx.doi.org/10.1103/PhysRevD.87.094019
http://dx.doi.org/10.1103/PhysRevD.87.094019
https://arxiv.org/abs/1303.3822
http://dx.doi.org/10.1103/PhysRevD.91.034010
http://dx.doi.org/10.1103/PhysRevD.91.034010
https://arxiv.org/abs/1411.0580
http://dx.doi.org/10.1016/j.physletb.2017.03.031
https://arxiv.org/abs/1702.06558
http://dx.doi.org/10.1007/JHEP07(2012)002
https://arxiv.org/abs/1111.4996
http://dx.doi.org/10.1140/epjc/s10052-018-6263-5
https://arxiv.org/abs/1804.08148
https://arxiv.org/abs/1901.04519
http://dx.doi.org/10.1016/j.nuclphysb.2013.07.013
https://arxiv.org/abs/1303.2129
http://dx.doi.org/10.1007/JHEP01(2018)044
https://arxiv.org/abs/1708.03528

