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1. Introduction

The set of backgrounds on which string theory makes sense is not limited to conventional
spacetime geometries of the sort first encountered in an introduction to general relativity. We can
define string theory on orbifolds [2], where the target space is a manifold quotiented by some dis-
crete group. Such a geometry is singular at the fixed points of the group action, yet the string theory
on such a background can be shown to be consistent (with the introduction of extra “twisted sec-
tors” localised at the fixed points). By combining the target space quotient with additional quotients
on the worldsheet (in particular, by worldsheet parity), we obtain string theory orientifolds [3-5],
in which the fixed points of the spacetime action mark the location of orientifold planes, non-
perturbative objects with negative tension. Consistency demands the inclusion of D-branes to can-
cel this negative charge, hence introducing open string degrees of freedom localised on the branes.
Meanwhile, a similar construction is used in the Hofava-Witten description of M-theory on an in-
terval [6,7]. We can view the interval as a circle quotiented by a Z, spatial reflection, then the fixed
points of the quotient are the interval endpoints, and anomaly cancellation in 11-dimensional su-
pergravity means that there must be additional degrees of freedom (Eg gauge multiplets) localised
at these endpoints. Shrinking the length of the interval to zero, this reduces to the Eg x Eg heterotic
string, and can then be related by string duality to theories involving orientifolds.

String theory is also believed to make sense on non-geometric backgrounds (for a recent com-
prehensive review, see [8]). These are backgrounds in which local patches are related by duality
transformations, which generically mix together metric and form field components (hence not geo-
metric). These include T-folds, when the background is only well-defined up to transformations by
the stringy T-duality symmetry, and also more generally U-folds, which are the non-perturbative
generalisation making use of the full U-duality symmetry. At fixed points in the moduli space
of T- or U-fold compactifications, the gluing by duality transformations becomes a quotient [9],
suggesting a general notion of non-geometric orbifolds and orientifolds (note that one can view
asymmetric orbifolds, in which the left- and right-movers are orbifolded differently, as being of
this type).

String theory on a d-dimensional torus is characterised not only by momenta p; in the toroidal
directions Y’ but by non-trivial winding w'. We can introduce the T-dual coordinates, ¥;, which are
conjugate to the string windings w', and parametrise a dual geometry. It is possible to formulate the
string worldsheet theory such that the target space is the doubled geometry with coordinates Y™ =
(Y',Y;) transforming in the fundamental representation of the T-duality group O(d,d) [10-16], and
use this to make sense of T-folds. For M-theory, or string theory including D-branes and other non-
perturbative objects, the analogous picture involves dual coordinates conjugate to general brane
windings, filling up representations Y™ = (Y, ~i1<..ipv~-) of the U-duality groups E;g), as first
investigated for the M2 brane in [17]. Generic non-trivial duality transformations act to transform
the “physical” coordinates Y’ and the duals into each other.

The duality groups O(d,d) and Eg4(q) are also visible in supergravity reduced to n dimensions
(where n+d =10 or 11). A long-standing question has been whether these symmetries are present
directly in higher dimensions prior to compactification. This can now be achieved using dou-
ble field theory (DFT) [13, 14, 18] and exceptional field theory (ExXFT) [19, 20], lifting the global
O(d,d) or Ey(4 acting in n dimensions to a local O(d,d) or E;(;) symmetry in an extended n + K
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dimensional geometry with coordinates (X*,¥Y") (with u = 1,...,n and Y¥ in a K-dimensional
representation of O(d,d) or E(4)). The extended geometry is described by metrics guv, #un,
and a set of gauge fields, all of which may in principle depend on the full set of coordinates Y™,
and which transform under local symmetries including generalised diffeomorphisms based on the
groups O(d, d) or E4) rather than on GL(K). A consistency requirement is that the true coordinate
dependence is however restricted, with for instance all fields and gauge parameters demanded to
depend only on at most d physical coordinates Y’ C Y¥, such that the n + K dimensional theory is
in fact equivalent to 10- or 11-dimensional supergravity.

The crucial advantage of DFT and ExFT is that once one has the covariant formulation in
terms of the extended coordinates Y, one can take different solutions of the consistency condi-
tions such that different sets of coordinates are regarded as physical. In this way, one recovers
different (dual) supergravity theories in 10 or 11 dimensions, all of which are contained within
the DFT/EXFT framework. For instance, EXFT (for any of the exceptional groups) can be re-
duced either to 11-dimensional maximal supergravity or to 10-dimensional type IIB supergravity
by choosing the d or d — 1 physical Y’ appropriately [20,21]. Although motivated originally by
the duality groups appearing on toroidal compactification, after truncating out the unphysical dual
coordinate dependence, DFT/EXFT are equivalent to the full supergravity theories in 10/11 dimen-
sions with no reference to compactification or particular backgrounds. They therefore provide a
very efficient and powerful approach to standard supergravity even before one considers, for ex-
ample, U-fold backgrounds, or relaxations of the consistency constraints to obtain non-geometric
compactifications.

In this contribution to the proceedings of the Corfu Summer Institute 2018, we will summarise
the results of our (somewhat lengthy) paper [1]. The purpose of this paper was to study orbifolds,
orientifolds and their generalisations using exceptional field theory. We introduced the following
definition for such backgrounds:

e An O-fold results by taking the quotient of a string/M-theory background by a discrete sub-
group of the E;(4) duality symmetry

Note the name suggests the close relationship to T- and U-folds mentioned earlier. We argued that
a natural setting to study O-folds is exceptional field theory. We can list some generic features of
O-folds in ExFT:

e The quotient acts geometrically in a straightforward manner on the extended coordinates Y™
and the ExFT fields, but may be highly non-geometric when viewed in terms of the standard
spacetime fields.

e Depending on how we choose the physical coordinates Y* C Y¥, the fixed points of the
quotient action may occur only in the dual directions, or only in the physical directions, or in
some more complicated manner. Viewing the fixed points as defining a generalised O-plane,
the intersection of this plane with the physical geometry describes different types of fixed
point planes in spacetime.

A somewhat trivial, but illustrative, example of how an ExFT O-fold “geometrises” a spacetime
quotient which is not solely geometric is provided by the Hotava-Witten case. There, though we
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quotient the spacetime background by a geometric action (a reflection in a circle direction), the 11-
dimensional three-form transforms with an additional minus sign (whereas if this was a geometric
orbifold it would transform only under the same reflection), such that the Chern-Simons term in
the supergravity action is invariant. When we lift to EXFT, the three-form is unified with the metric
and the Z, reflection that implements the Hotava-Witten quotient acts on the ExFT fields naturally
as an E; 4 transformation, i.e. as a (generalised) geometric transformation.

Evidently, the space of all possible O-folds is quite vast. We therefore focused on some par-
ticularly interesting examples. Namely:

o We studied only O-fold quotients which preserve half the supersymmetry, which can in fact
be classified given a fixed EXFT group Ey4).

e We analysed in detail the simplest Z; quotient which describes the “half-maximal duality
web” and showed how in this case it is possible to introduce additional degrees of freedom
at the fixed points in an E;(4) covariant manner.

This article has the following structure. In section 2, we give a very brief introduction to
the ideas of exceptional field theory. Then in section 3, we review the orbifold and orientifold
construction of what we call the “half-maximal duality web”, which links the heterotic theories,
type Il in the presence of orientifolds, and M-theory on an interval. We follow this in section
4 by explaining how we define half-maximal O-folds within ExFT. In section 5, we focus on an
example Z; quotient of the SL(5) EXFT, and demonstrate how it recovers all of the theories in the
half-maximal duality web of section 3. Then in section 6, we outline how to include additional
gauge fields corresponding to the (possibly localised) extra degrees of freedom expected in each
quotient construction.

2. Exceptional field theory

The EXFT construction (following [20, 22]) closely resembles a supergravity theory in n di-
mensions, but with the n-dimensional coordinates X* supplemented by a further set of coordinates
YM € Ry, where R is a particular representation of the group Eg(q), with n+d = 11. The directions
XH may be referred to as external. The fields of the theory, depending formally on all coordinates
(X*,YM), include an external metric, guv, a generalised metric, .#yy, and a set of generalised
gauge fields collectively known as the tensor hierarchy. These fields may be written carrying both
external and R; indices as &/, ™, 2,,"V, €,,,,M"", .... More precisely, we in fact have %, € Ry,
Guvp €ER3, ..., where Ry, Rs, ... denote particular further representations of E;(4), with for instance
Ry C (R ®R1)Sym, R3; C (RI®R| ®Ry).

The local symmetry associated to infinitesimal transformations Y™ = —AM of the extended
coordinates is the generalised diffeomorphism symmetry, acting on generalised vectors V¥ via

5AVM = fAVM = AN8NVM — OCPMKNLaNALVK + Ay 8KAKVM R 2.1

which defines the generalised Lie derivative £, on a generalised vector V¥ of weight Ay. Here
PMyN| s the projector onto the adjoint of E4 (4, and o is a group-dependent constant [23]. Alter-
natively, one can write

LAV = AN VM — VN oA L YMN 1 ONAKVE + (A + @) ag ARV (2.2)
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where YMN

kL is an invariant tensor of Ey(4), and @ = —1/(n —2). The generalised metric is a rank
two tensor of weight zero under generalised diffeomorphisms, while the external metric is a scalar

of weight —2@. Meanwhile the external one-form JZf”M transforms as a gauge field,
8y =DyN" =Y oSt Du=0u— Ly, (2.3)

under a combination of generalised diffeomorphisms and gauge transformations AMMN € R, asso-
ciated to the field 2,,,™" at the next level of the tensor hierarchy (§ %,V = 2D, A,)"V +...).
The further details of the construction will not be repeated here. The key point relevant to
the O-fold construction is that we should require the Y-tensor be preserved by whatever we are
quotienting by, so that generalised diffeomorphisms are preserved as a symmetry of EXFT. This
will of course be guaranteed if we only take quotients with respect to subgroups of E;(4), but note
that for O(d,d) [1,24], the Z; quotient leading to orientifolds is not an element of O(d,d), but does

YMN ¢, invariant.

leave
The coordinate dependence on the extended coordinates Y™ is constrained by the section con-

dition:
8M®8N‘R2 =0, (2.4

which ensures that the algebra of generalised diffeomorphisms closes. This condition is to be
thought as being imposed on all pairs of derivatives acting either on a single field/gauge parameter
or on two separate fields/gauge parameters. A choice of physical coordinates Y/ C Y™ such that
(2.4) is satisfied will be called a solution of the section condition (SSC). Upon solving the section
condition, we break the E;(;) symmetry, and find that all fields decompose into GL(d) (or GL(d —
1)) representations with generalised diffeomorphisms reducing to ordinary diffeomorphisms plus
gauge transformations of the spacetime p-forms.

Given the above fields, we can use invariance under the local symmetries — generalised diffeo-
morphisms plus external diffeomorphisms and gauge transformations — to construct (in some cases
pseudo-)actions which encode the dynamics of 11- and 10-dimensional maximal supergravity to-
gether in an E;4) covariant fashion.

3. The half-maximal duality web

Type I

The type I superstring is obtained as the quotient Type I = Type IIB / Q, where Q is the
worldsheet parity transformation Q : 6 — —o. We can view this as being equivalent to adding a
spacetime filling orientifold plane, called an O9 plane. This has negative RR tension, and so we
are led to add 16 D9 branes. The unoriented open strings ending on these branes then provide a
SO(32) gauge sector, which is exactly what is needed to cancel the anomaly of the type I theory.

The action of the transformation  on the bosonic massless (SUGRA) fields of type IIB is
Q:(g,B2,0,Cy,C2,Cs) — (g,—B2,¢,—Cp,C2,—C4). Quotienting out, and including the gauge
fields from the open string sector, we obtain the bosonic field content of type I SUGRA, namely:
(g,C2,0,A%). In the presence of the gauge fields, the Bianchi identity for the field strength F3
of C, is modified, such that dF3 ~ tr(F A F), where F denotes the field strength of the SO(32)
gauge field. Similarly one finds that the two-form C; transforms under gauge transformations of



Orbifolds and Orientifolds as O-folds Chris Blair

the A%, schematically 6C, ~ tr(AdA), for 0A* = DA®. This, together with additional gravitational
contributions to the gauge transformations and Bianchi identities, is vital for anomaly cancellation.

Type I

We can view the worldsheet parity transformation as interchanging left- and right-movers,
Q : X; <+ Xg. Now, T-duality acts such that X = X; + Xz — X = X; — Xz. Combining Q with
T-duality we find that the T-dual of the IIB/Q quotient is IIA / Q .# where .# : X — —X. This now
acts also on the target space, as a reflection in the IIA dual circle. We thus have in spacetime an
Sllé /Z, orbifold, which when combined with the Q quotient gives an orientifold. The fixed points
are X = 0, X = 7R, and at these fixed points we have O8 planes. We are now led to add 8 D8s at
the fixed points, giving an SO(16) x SO(16) gauge sector

Acting with further T-dualities produces theories with Op planes at the fixed points of a trans-
verse T°~P /7, orbifold.

Horava-Witten / heterotic Eg x Eg

The Hotava-Witten description of M-theory on interval is as follows. We view the interval as
I = S}/ Z,, where the Z; transformations acts as .# : z — —z. The fixed points are again z = 0, TR.
The action of .# on the 11-dimensional SUGRA fields is non-trivial: so that the 11-dimensional
action is invariant, the three-form must transform with an extra minus sign, i.e. we have .7 :
(g,C3) — (g,—C3). Decomposing the 11-dimensional coordinate index fI = (u,z), with u 10-
dimensional, we have that gy, g.; and C,y, are therefore even under .#, while g, and 6,y are
odd, transforming as

I IguZ(X,Z) - _guz(X, —2) Cuvp (x,2) — —Cuvp (x,—z) (3.1)

and therefore projected out at the fixed points. Anomaly cancellation requires additional degrees
of freedom at these fixed points (which we view as 10-dimensional “end-of-the-world” branes), in
particular we need an Eg super-Yang-Mills theory at each fixed point. The Bianchi identity for the
field strength Fj of the three-form is then dFy # 0, but receives localised contributions from the field
strengths of the Yang-Mills fields (plus also gravitational contributions which are also localised
at the fixed point planes); similarly the even components of the three-form transform under the
gauge transformations of the Yang-Mills fields, which are also of course localised, schematically
SC‘uvZ ~ 6(Z) tr(A&wAv]).

For small R, M-theory on Sk/Z, reduces to the heterotic Eg x Eg string theory. We can see
this at the level of supergravity by noting that at fixed points we obtain the heterotic massless fields
(g,B2,¢) from the even components of the 11-dimensional metric and three-form:

(gze\EaBuVae‘p) ~ (glJV7C,uVZ7gZZ) (3.2)
with the odd components projected out. The Yang-Mills multiplets then descend to those of the
Eg x Eg heterotic SUGRA in the limit R — 0. The two-form field By, then comes with modified
gauge transformations and Bianchi identity, inherited from the localised modifications of the parent
three-form.
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Note that in the bulk, we still have a theory described locally by maximal 11-dimensional
SUGRA, with the Yang-Mills sector localised at the boundary where half the maximal degrees of
freedom drop out.

Heterotic SO(32)

The other heterotic theory, that with gauge group SO(32) can be obtained as the strong cou-
pling limit of the type I theory. The two heterotic theories are T-dual to each other in the presence
of Wilson lines which break the gauge groups.

4. Orbifolds, orientifolds and O-folds

4.1 Orbifolds and orientifolds

An orbifold is obtained as a quotient of a manifold M by a discrete group Gyiscrete- 1f We con-
sider strings on an orbifold, and take an additional quotient by worldsheet parity, then we obtain an
orientifold. At fixed points of a stringy orbifold or orientifold, we will generically have additional
degrees of freedom (twisted sectors), which will be needed for consistency. For instance, for orb-
ifolds we require modular invariance, which can be used to work out what the twisted sectors must
be, while for orientifolds they may be determined by charge or anomaly cancellation.

4.2 O-folds in ExFT

We define O-folds to be the generalisation of orbifolds and orientifolds obtained by quotienting
string or M-theory by discrete subgroups of the U-duality group in d dimensions. Quotients with
respect to discrete subgroups of the U-duality have of course been studied in the literature, see
for instance [25] which suggested the term “generalised orientifold” for such constructions. We
propose to study these systematically in the context of exceptional field theory, as this provides a
natural setting in which the action of U-duality can be geometrised. For this reason we use the
name “O-fold” to emphasise the similarity with T- and U-folds.

Given ZMy € Giserete C Eq(q), we impose a quotient via an identification on the extended
coordinates

(XM YY) ~ (XM Y™M) = (XM, ZM YY), 4.1)

and generalised fields e.g.

gIJV(Xﬂy) NgIJV(Xuy/)7
%MN(XaY) ~ (Z_I)PM(Z_l)QN%PQ(XaY/)7 (42)
"Q{IJM(Xa Y) ~ ZMNJZ{,LLN(Xv Y/) )

plus similar transformations of the other tensor hierarchy fields according to their representations.

Let us consider the coordinate identification, Y ~ ZM YN Depending on the choice of phys-
ical coordinates in a given SSC, we may have a geometric quotient in spacetime, i.e. Y/ ~ ¥/,
leading to conventional orbifolds/orientifolds or a non-geometric identification Y’ ~ ¥; j» which
corresponds to asymmetric orbifolds and “non-perturbative” generalisations. Fixed points occur
when YM = ZM YN Again, depending on the SSC, these fixed points may occur only in dual



Orbifolds and Orientifolds as O-folds Chris Blair

directions, or only in physical directions, or in some complicated fashion where one can not dis-
entangle the physical and dual directions at all. This general picture is compatible with T/U-fold
compactifications, for which O-folds would appear at fixed points in moduli space [9].

4.3 Half-maximal O-folds

The standard ExFT construction leads to a theory with maximal supersymmetry [26]. How-
ever, one can formulate conditions to encode backgrounds and theories with less supersymmetry
in E;(4) covariant language - in fact one can do this while working exclusively with the bosonic
sector of the theory, as we will do here. We require the existence of an E;(;) EXFT half-maximal
structure [27], which for d < 6 consists of the generalised tensors (the d = 7 case is not quite the
same, and is also discussed in [27])

JMER, Run€ERis4=R, 4.3)

which are to be viewed as nowhere vanishing sections of bundles (over the physical spacetime
manifold) whose fibres are the Ed(d) tensor hierarchy representations R; and R,,_4, and which obey
certain compatibility conditions. Here, u = 1,...d — 1 and n = 11 —d. The existence of these
objects is equivalent to the presence of spinor bilinears built out of globally defined Killing spinors,
as mentioned above we will work solely with the bosonic part of the theory.

The existence of this half-maximal structure reduces the structure group to Spin(d — 1) C Ey g
which preserves the half-maximal structure. It follows that we can consider quotients by discrete
subgroups of Spin(d — 1) C Ey(4) in order to obtain half-maximal generalised orbifolds or O-folds

5. Example: SL(5) and the half-maximal duality web

5.1 SL(5) ExFT and half-maximal structure

The SL(5) ExFT [19,28,29] has coordinates (X*,Y™), where u is a seven-dimensional index,
and the extended coordinates Y transform in the ten-dimensional antisymmetric representation of
SL(5). Letting a,b = 1,...,5 denote fundamental indices of SL(5), we can write the coordinates
carrying a pair of antisymmetric fundamental indices, Y¥ = Y% = —y%¢ ¢ 10. The totally anti-

abcde

symmetric invariants are denoted 7 pcq. and N , and the Y-tensor defining the generalised Lie

Yab,cd

derivative (2.2) is ef.gh = n“hc‘”nefgh,-, so that the section condition is [28]

a[ab®acd] =0, 5.1)

acting on fields/gauge parameters and on pairs of fields/gauge parameters. This admits four-
dimensional solutions, corresponding to reductions to 11-dimensional supergravity, and three-
dimensional solutions, corresponding to reductions to IIA and IIB supergravity (the former is
naturally contained within the M-theory solution by imposing an additional isometry, while the
latter is inequivalent under SL(5) transformations) [21].

The generalised metric .#, ¢ decomposes as A yp cqa = 2ma[cmd} » Where m;, is a symmetric
unit determinant matrix, parametrising SL(5)/SO(5). The other EXFT fields are the external met-
ric, guv, and the tensor hierarchy fields. The relevant representations are Ry = 10, Ry = 5R;=5
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and Ry = 10, so we write the fields as .sz%““b s Buva, uvp® and Zyypeap. (Alternatively we can
write these as carrying R; indices, for instance QE#VMN is given by %’wab’”d = qabede Blive-)

The half-maximal structure consists of three generalised vectors, J,%°, u = 1,2,3 and a gener-
alised tensor K in the 5 of SL(5). These obey [27]

bc Jvde bc dee

1 N
= *6Ltvnabcde-]w ) nabcdeKaJubCJvde >0. (52)

3

The stabiliser of this half-maximal structure can be shown to be SU(2) C SL(5). Half-maximal
O-folds therefore result from quotienting by discrete subgroups of SU(2), which admit an ADE

Nabed eJ u

classification. These subgroups can be constructed explicitly after fixing (without loss of general-
ity) K* = (0,0,0,0, k), k # 0, corresponding to splitting the index a = (i,s) with i = 1,...,4 (that
is, K' = 0,K* # 0). After making this choice, one can construct the half-maximal structure and its
stabiliser in terms of the self-dual and anti-self-dual ’t Hooft symbols 7, ;; and 7, ;;, finding the
most general SL(5) element which leaves the half-maximal structure invariant is of the form

6 si 0= 6y
70 _ (cos 85'; +gln§nu,ij§ (1))  0=1/6,0,0" 5.3)
involving three real parameters 6,. We really only want to consider stabilisers corresponding to dis-

crete subgroups: this means restricting the parameters 6, in order to reproduce the ADE subgroups.

For example, 63 = k4T”’ 6, = 6, =0 gives the generators of the Ay series, kK > 1, corresponding to
Zy+ subgroups.

Note that one could choose an M-theory solution of the section condition such that the physical
coordinates are Y* and the duals are Y*/. Then the quotient by discrete subgroups generated by
the above stabiliser acts entirely in the physical spacetime, corresponding to M-theory on C?/T"
where I are the ADE subgroups. In other choices of the section condition solution, the quotient
will generically involve identifications between physical coordinates and duals, and so be non-
geometric in nature. An exception, which we can analyse in detail, corresponds to the simplest

possible quotient, namely that by Z,.

5.2 7Z, O-fold and the half-maximal duality web

We will now focus in detail on this Z,, which is generated by
Z% =diag(—1,—1,—1,—1,+1). 5.4

This transformation acts directly on the fundamental representation, such that a single direction in
the 5 is even (we emphasise this by colouring the plus sign red) and four are odd. On the anti-
symmetric representation, corresponding to the extended coordinates, we have Y% — 747"y,
Hence six of the coordinates Y? are even under the Z, and four are odd. We quotient by the action
of (5.4) on both the coordinates and the EXFT fields. This defines the Z, O-fold without making
reference to a specific solution of the section condition. We can then proceed to consider different
SSCs, for each of which the Z, transformation will result in different quotients in spacetime. This
means making use of the dictionary developed in [1] to relate the components of the EXFT fields
to components of the standard supergravity fields, allowing us to identify how the latter transform
under (5.4). We will now summarise the results of this procedure.
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Note that below we will identify the Eg x Eg and SO(32) heterotic theories according to how
they appear according to their known duality relationships, however strictly speaking we do not
yet have an intrinsic EXFT method for determining the gauge group. We will discuss in the next
section how one can, despite this, introduce localised vector multiplets for different gauge groups.

Our notation here is such that we first list the parity of the five-dimensional index a under
the transformation (5.4), then that of the coordinates Y, grouped according to whether they are
physical or associated to particular brane windings and hence dual.

M-theory SSCs

To describe the four-dimensional M-theory solution to the section condition (5.1), we decom-
pose the fundamental index a = (i,5), with i = 1,...,4. The coordinates split as Y* = (Y y/)
and we impose d;; = 0 acting on all fields and gauge parameters, so that Y™ become the physical
coordinates (alongside the X*).

e Hotava-Witten: a = (i,5) parity (+————)

physical: Y5 — 4 ++

ij 5.5
dual M2 w): YV — — —+ 4+ (5.5)

We have a reflection in one spacetime direction, Y5 — —Y!3. This gives the Hofava-Witten
interval. We can decompose the fields to find that for example Saﬁw,f is odd: this corresponds
to the components Cyy, of the three-form, hence the SL(5) Z; quotient (5.4) gives not only
a spacetime reflection but also acts as C3 — —Cs.

e Geometric orbifold: a = (i,5) parity (——— —+)

physical: Y5 — — ——

[ (5.6)
dual (M2 w): Y ++++++

Here we find that we have reflections in four directions in spacetime, but in fact there is no
action on the fields, so this is a geometric orbifold, corresponding to M-theory on T*/Z; (or
R*/Z>).

ITA SSCs

To describe the three-dimensional ITA solution to the section condition (5.1), we decompose
the fundamental index a = (i,4,5), withi = 1,..., 3. The coordinates split as Y%’ = (Y3, Y Yy y4),
with dss = 0 = d;j = di4, so that ¥ 5 are the physical coordinates alongside the X*. We now have
three types of SSC depending on whether the even direction singled out by the Z, generator (5.4)
is one of the i, 4 or 5.

e Heterotic “Eg x Eg”: a = (i,4,5) with parity (— — —+ —)

physical: Y +++4

M-theory: Y+ —
dual (F1 w): Y 44+
dual (D2 w): Y ———

(5.7
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There are no identifications in the physical spacetime: hence the full 10-dimensional space-
time is a fixed point. Studying the action on the fields, we find that C; and Cs are projected
out.

e Type I (O8 planes): a = (i,4,5) with parity (+————)

physical: Y® — 4+
M-theory: Y* +

dual (F1 w): YV ——+

dual (D2 w): Y™ — 4+

(5.8)

We now have a reflection in one spacetime direction, Y3 — —Y!3. The fields transform as
(g,B2,9,C,C3) — (g,—B2,0,C1,—C3). This agrees exactly with what happens in type IIA
in the presence of O8 planes, localised at the fixed points of the Y'!° reflection.

e IIA with O6 planes: a = (i,4,5) with parity (— — — —+)

physical: Y® — — —
M-theory: Y* —

dual (F1 w): YV ++4+

dual (D2 w): Y™ ++4++

(5.9

We have reflections in three directions in spacetime, Y™ — —Y®. The fields turn out to
transform as (g,B2,9,C1,C3) — (g, —Ba, ¢, —C1,C3), matching the description of IIA in the
presence of O6 planes.

IIB SSCs

To describe the three-dimensional ITA solution to the section condition (5.1), we decompose
the fundamental index a = (i, ), withi = 1,...,3 and o = 1,2 associated to the unbroken SL(2)
S-duality symmetry. The coordinates split as Y% = (Y, Y"® Y*P), and we take djg = 0 = Jyp. SO
the physical coordinates are the three Y’/ (which can be dualised into a form with one index, albeit
lowered). There are two types of SSC, depending on whether the even direction of the 5 singled out
by the Z, transformation (5.4) is one of the physical directions i or one of the S-duality directions
.

e Heterotic “SO(32)”: a = (i, @) with parity (— — —+ —)
physical: Y" +++
dual (D1/F1 w): Yi® { (5.10)
+++
dual (D3 w): Y% —

Here there are no reflections in the physical directions, so we have a ten-dimensional space-
time. It turns out that the fields Cy, C>,Cy4 are projected out.
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e Type I: a = (i, o) with parity (— ———+)
physical: YY +++
o+

dual (D1/F1 w): Yi® .11

dual (D3 w): Y% —

This is the same as the previous case but with the even S-duality direction interchanged with
the odd S-duality direction. Again there are no reflections in the physical directions, so we
have a ten-dimensional spacetime, and now the fields Cy,B,,Cs. This therefore naturally
corresponds to the type I theory, which is S-dual to the heterotic SO(32).

e IIB with O7 planes: a = (i, &) with parity (+ ————)

physical: YV — —4
dual (D1/F1 w): Y® 11_ (5.12)

dual (D3 w): Y®P +

We have reflections in two directions in spacetime, and the fields B;,C, turn out to be odd.
This corresponds to IIB in the presence of O7 planes.

5.3 Generalised O-planes

We can view the above construction geometrically as follows. As four of the coordinates
YM are odd, we have 2* fixed points of the Z, quotient. Each of these fixed points gives a 7 + 6
dimensional O-fold plane. These O-fold planes can intersect with the 744 or 7+ 3 dimensional
physical spacetime in a variety of ways. When the odd coordinates are all dual, the fixed points
do not occur in the physical directions and so the O-fold planes fill the entire physical spacetime.
Then, we obtain true 10-dimensional theories corresponding to type IIB in the presence of O9
planes (i.e. type I), or the heterotic theories (which can perhaps be associated to certain NS9
planes [30]). Alternatively, there can be genuine fixed points in some of the physical directions
Y!, so that the O-fold plane is not spacetime filling but rather becomes for example an ordinary
orientifold plane (perhaps automatically accompanied by D-branes) in spacetime, or some even
more non-perturbative generalisation (in the M-theory geometric orbifold, the fixed point planes
can be thought of as the strong coupling limits of O6 plus D6 brane configurations).

6. Localised vector multiplets in the Z, O-fold

We will now sketch how one can introduce localised vector multiplets, leaving most of the
details to [1] (see also [27, 31, 32]). The idea is that we will study the theory at a fixed point,
expanding all ExXFT fields in terms of a basis of generalised tensors which do not vanish at the
fixed points. We then extend this basis to include additional vector fields which are localised at
the fixed points. For simplicity, let us imagine we are working with only one fixed point - letting
y denote the collection of all (physical) odd coordinates, we will focus on the fixed point at y = 0

11
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(the generalisation to treat multiple fixed points simultaneously is straightforward but notationally
cumbersome). We denote the basis we need by

(DAM = (wkMawkMathM)v n €R25 i E1611747 (61)

such that for instance a generalised vector is expanded as VY (X,Y) = ox™ (Y)VA(X,Y) + ...,
where the ellipsis denotes components that vanish at the fixed points. (Away from the fixed points
we retain locally the full EXFT degrees of freedom, subject to the overall Z, identification: the
question of interest is to work out happens at the fixed points themselves. For this reason we will
drop the “odd” components vanishing at the fixed points in the following discussion.) Thus at the
fixed points we have generalised vectors V4 = (V£ V,, V%), where k = 1,2,3 is used to label the
six even components coming from the original generalised vector VM, and o = 1,...,dim G labels
adjoint indices of some Lie group G, and are carried by the additional components V% which only
appear at the fixed point. In the basis (6.1), we therefore take ®," to be localised at the fixed point.
The wy can be thought of as providing a basis for an enlarged (localised) tangent bundle similar to
heterotic generalised geometry [33]. (Note that G is introduced “by hand” in this procedure, as we
do not yet have an understanding of how to fix this in EXFT. In principle, this gauge group G could
include a Lorentz factor as used in similar circumstances in [33, 34] so as to describe both gauge
and gravitational contributions to the modified Bianchi identities.)
Then for instance the half-maximal structure is expanded as:

JuM(XaY) :JMA(X7Y)(DAM(Y)+"- s

X (6.2)
R(X,Y)=e XXM p(y)+ ...

(the quantity e~%¢ here is related to the dilaton in the theory at the fixed points) and the fields <7,
A as:

A MX,Y) = AN (XY ) oM (Y) + ...

(6.3)
%‘u'v(X,Y) — B#v(X,Y)n(Y) + e
The even basis obeys consistency conditions, including
A N0 =Mapn, Lo, 0= —fas" 0, 6.4)

where A : R; ® Ry — R, is a generalised wedge product [35]. The quantities 14 and f43¢ encode
the structure of the theory at the fixed points. The latter encodes the structure constants fqg7 of the
Lie group G, and has all other components vanishing. The symmetric matrix 14p is written as

0§ 0
me= (650 0 , (6.5)
0 O 5(Y)Kaﬁ

where kg is a Killing form for the Lie group G. Using the above relations, we can analyse the
modification to the generalised Lie derivative at the fixed points owing to the expansion in terms of
the ws™. The result is

LAV = NPOgVA — VPRt + P ncpdp AV + fac APVE . 6.6)
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Here d4 = w4sM 0y, and we always take d, = O (this means that the components no‘ﬁ of the in-
verse N2, which would be problematic owing to the delta function in (6.5), do not appear).
This generalised Lie derivative essentially coincides with that of O(D,D + dim G) heterotic DFT
[13,14,33,34,36,37], but remarkably it has inherited from the ExFT starting point the ability to
describe not just the heterotic theories but the other theories present in the half-maximal duality (in
particular the delta function in (6.5) allows us to pick out theories with fixed points in spacetime).

For example, we can consider the gauge transformations of the external one-form, M“M , as
in equation (2.3). Consider first the expansion of both MMM and the gauge parameters A in
the basis (6.1). The components of the one-form are then #,* = (A% Ay, Ay ®). The quantity
Au& is related to components of the metric in the theory restricted to the fixed points, while A,
correspond to non-vanishing components, with one external index, of some form field (see below
for some examples). Meanwhile Au‘" are interpreted as gauge fields localised at the fixed points.
Similarly the components A% = (A, A, A%) correspond to diffeomorphisms in the directions of the
fixed plane, form-field gauge transformations, and gauge transformations of the Au“, respectively.
In fact, the form of the modified Lie derivative implies that it is natural to “twist” these components
such that A — Aux + 08 (y)tr (AuAy), Ay — Ag+ 0 8(y)tr (AAg), where A% is a localised gauge
field' carrying an “internal” index k (this appears in the expansion of the half-maximal structure
itself, or equivalently the generalised metric which at the fixed point is in fact expressed solely in
terms of the half-maximal structure). Here o is a constant pre-factor, and the trace is in the adjoint
of the gauge group G (tr(AAy) = Kaﬁf\‘l"f\g ). We similarly expand the gauge parameter A,JM N'in
terms of the generalised tensor n appearing in (6.1).

Then, studying the expansion of (2.3), and using (6.6) as well as further compatibility con-
ditions involving the basis (6.1), we find that that the components A, pick up a localised gauge
transformation under gauge transformations A% of the extra gauge fields, of the form

SAuk < 8(y)Kop A" (DuAiP — 9ALP)., (6.7)

where Dy, = dy; — La, a covariantised external partial derivative, with L4, the ordinary Lie deriva-
tive with respect to A%

This modified gauge transformation can be interpreted in different SSCs. Depending on the
SSC, all, some or none of the y are physical directions. For instance,

e in the Hofava-Witten SSC, the full set of odd coordinates are y = (Y2, Y13 ¥4 y15), while
the physical coordinates are Y™, i = 1,...,4. So, the only odd physical coordinate is Y.
Focusing solely on the fixed point at Y3 = 0, we take the delta function in (6.5) to be
just §(y) — 8(Y'3). A close inspection of the dictionary relating EXFT to 11-dimensional
SUGRA reveals that the components Ay can be identified with the even components Cyx
of the 11-dimensional three-form, which indeed receive localised modified gauge transfor-
mations in the Hotava-Witten theory.

! Actually, in some SSCs, corresponding to cases where the fixed point plane does not fill all of spacetime, the Ako‘
correspond to adjoint scalars. This is determined by the choice of overall EXFT section condition solution, which can
imply that some di = 0. In the type IT orientifold case, for instance, they can be thought as the usual scalar fields in the
low energy effective actions on Dp branes, T-dual to the Yang-Mills gauge fields in the type I theory.

13



Orbifolds and Orientifolds as O-folds Chris Blair

e in a heterotic SSC, or that corresponding to type I, the full set of coordinates y are always
dual coordinates only, so that we replace 6(y) — 1. Then the Ay, correspond to compo-
nents By of the 10-dimensional NSNS 2-form (in heterotic) or components Cy of the 10-
dimensional RR 2-form (in type 1), and the localised gauge transformation (6.7) is the usual
Green-Schwarz modification.

This analysis can be extended to the other ExFT fields in order to obtain the full set of modified
gauge transformations of the requisite form field in each SSC. Continuing in this way, we reproduce
the field content, extra gauge fields, modified Bianchi identities, full modified (Green-Schwarz)
gauge transformations, and actions of all the theories in the half-maximal duality web. This is
explained at length in [1].

7. Discussion and open problems

We have outlined in this proceedings some of the features of O-folds, as can be studied in the
context of exceptional field theory. We saw that a simple Z, quotient provided a unified description
of type II orientifolds, heterotic and Horava-Witten, and that we could include localised vector
multiplets within EXFT. This was carried out in detail for the SL(5) EXFT, but the general idea will
go through to other groups.

The outstanding open problem is to develop a method to determine the gauge groups appearing
at fixed points. For the Z, quotient, this requires an understanding of anomaly cancellation in EXFT.
The hope would be that the unification of metric and gauge degrees of freedom in ExFT, plus the
fact that it describes the trivially anomaly free (non-chiral) IIA theory on the same footing as the
potentially anomalous (chiral) IIB theory, might be a simplifying factor. This would presumably
require the introduction of concepts such as topological invariants in EXFT, which are not currently
understood.

It would be interesting to consider the moduli space of O-fold compactifications, and explore
gauge enhancement. Even for the Z, O-fold alone this may be rich to explore. A first step here
could be to look at the type I’ / heterotic SSCs and understand whether the heterotic DFT description
of gauge enhancement of [38,39] can be embedded in EXFT. On the heterotic side, this corresponds
to tuning Wilson lines and other moduli, while on the type I’ side this translates into statements
about the locations of D-branes on the interval: in the EXFT O-fold picture, these should be different
facets of a unified picture. Additionally, the M-theory geometric orbifold (5.6) can also be viewed
as M-theory on an orbifold limit of K3, and we could imagine seeking to understand ExFT on the
fully resolved K3, generalising the approach of [32].

The classification of possible O-folds, and whether they are geometric/non-geometric in dif-
ferent SSCs, for different E;(4) groups and potentially different amounts of preserved supersym-
metries, is an obvious avenue to pursue. Note that there can be new features, e.g. in the d =5
SO(5,5) there are two types of half-maximal structures (chiral and non-chiral) leading to a richer
spectrum of quotiented theories [1].

Generically, an O-fold will be highly non-geometric, with physical coordinates Y identified
with dual coordinates ¥ in all solutions of the section condition. Whether or not one can obtain
some amount of control over such configurations in EXFT remains to be seen.
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