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1. Introduction

The LHCb VELO detector [1] was designed to be a precise tracking detector surrounding the
LHC beam to determine the trajectories of the particles produced in proton-proton collisions at up
to
√

s = 14 TeV. To achieve the required resolution the inner edges of the sensors were very close
to the LHC beams. This required that they were operated in a very stringent radiation environment;
the effects of the irradiation were monitored and where appropriate the operating conditions were
adjusted.

2. LHCb Experiment

The LHCb detector [2] is a single-arm forward spectrometer covering the pseudorapidity range
2 < η < 5, designed for the study of particles produced close to one of the proton beams. The
detector elements that are particularly relevant to this analysis are: a silicon-strip vertex locator
(VELO) surrounding the pp interaction region that allows c- and b-hadrons to be identified from
their characteristically long flight distance. The LHCb detector has a vertically oriented dipole
magnetic field and detectors after the magnets, which determine the momentum of particles, while
the VELO determines their trajectory close to their production vertex.

The VELO is comprised of 88 silicon sensors, arranged as shown in Fig. 1 surrounding the
interaction region. These strip sensors have a sensitive area from 8 to 42 mm from the interaction
region, with 2048 strips on each. The two types of sensor measure the radial position and azimuth
for all charged particles crossing them. Each detector half is retracted by 3 cm before each LHC
injection to avoid the larger beam spread before acceleration to the collision energies, then closed
around the luminous region each fill. The detector was designed to tolerate five years of operation
at the nominal LHC luminosity; which they have more than experienced, having been in operation
since 2009. The detector is being replaced with an upgraded version [3] during the two years of
LHC shutdown starting in 2019.

3. VELO sensors

The 86 of the VELO sensors are n-in-n silicon, with a p-implant on the back to create the n-p
junction diode which is reverse biased by the applied HV supply. The remaining two sensors are
n-in-p sensors, to evaluate the operation of that technology choice. A p-spray implant is inserted
between each n type readout strip, to improve the charge isolation between strips. Each strip is
connected to a channel on the front end ASIC, the ASICs sit outside the sensors. To connect the
ASICs to the strips two layers of aluminum traces provide the signal routing, allowing the electrons
arriving after the passage of a charged particle to be detected. The first metal layer is along the
center line of each strip, the second runs between the strip and the ASIC.

4. Effects of the radiation

The Large Hadron Collider (LHC) has operated in proton-proton mode delivering 1.1 fb−1 at√
s = 7 TeV, 2.1 fb−1 at

√
s = 8 TeV and 5.7 fb−1 at

√
s = 13 TeV to LHCb between 2009 and 2018.
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Figure 1: Layout of the VELO sensors along the beam line (top) and the sensor positions around the beam
in operation and injection settings (bottom).

Small amounts of proton-ion and ion-ion data were also collected in dedicated data taking periods.
The radiation dose delivered to the sensors varies exponentially from (2−60)×1012 1 MeV neutron
equivalent per cm2 as a function of radius and by a factor of two as the z position of the sensor
changes [1]. The effects of the radiation damage [4] are thus very concentrated at the inner radius
of the sensors. One effect seen is the increase in leakage current with time, see Fig. 2, which shows
the current at a fixed voltage increasing due to the damage to the silicon.

Before significant irradiation there were a few sensors with significant surface currents, which
rapidly reduced, then all of the sensors’ currents evolved with the delivered luminosity. The oc-
casional dips in current were due to beneficial annealing, as the cryogenics plant, which provides
the liquid CO2 to cool the sensors, was undergoing maintenance. The final dip on the plot in Fig.
2 on the right hand edge was a deliberately induced annealing at 20◦C for 40 hours; using the
remaining beneficial annealing before the final data taking later in 2018. The average sensor cur-
rent dropped from 190 µA to 150 µA at 150 V, which was consistent with the prediction from the
Hamburg model [5].

At installation the sensors were all fully depleted at the operational bias of 150 V, later as
the inner edges of the sensors underwent type inversion the effective depletion voltage (EDV)
increased and the sensors were operated at up to 400 V. The EDV definition adopted is the voltage
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Figure 2: The operational temperature of the VELO (top), the delivered Luminosity (middle) and the leak-
age currents for all sensors and the average (bottom), verse the date. The pattern in the temperatures is that
the sensors are at−8◦C when powered and−30◦C when quiescent, the liquid CO2 cryogenics plant was run
nearly continuously once the sensors had been first irradiated. In the period from spring 2013 to spring 2016
the LHC underwent a two year stop for accelerator upgrades and maintenance, the constant VELO leakage
currents during the stop reflect the lack of irradiation during that period. After the restart the instantaneous
luminosity delivered was increased over the following two years, as the LHC operation improved. The more
rapid rise in currents from 2016 onward reflect the higher delivered irradiation.

which gives 80% of the charge collected for a fully depleted sensor. The EDV was monitored
every few months, by short dedicated runs where the HV on sets of sensors was scanned and the
collected charge evaluated using tracks extrapolated from the fully depleted sensors. Fig. 3 shows
the state of the detector in September 2018, after the deliberate annealing. This is compared with
the predictions from the Hamburg model [5] with and without annealing, the extrapolation in the
Hamburg model was from a calibrated point in early 2016. Using the EDV scans the HV was
adjusted on a per sensor basis to ensure full deletion across the full surface area. The deliberate
annealing made sure that in the final year of running none of the sensors would require more than
450V to deplete, lower than the design HV of 500V. The prediction of the Hamburg model was that
the deliberate annealing would reduce the maximum EDV from around 400V to 300V at the time
of the annealing.

The VELO sensors have excellent signal to noise ratios, with noise averaging∼ 2 ADC counts
or less for all strips, and the most probable values of the signal distributions are between 28 and 35
ADC counts for all sensors in 2018. So the global cluster finding efficiency (CFE) was excellent,
contributing to the impressive physics performance. However, there were some anomalies in the
CFE, with lower efficiencies in some areas. These effects were traced to effects of having the
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Figure 3: The effective depletion voltage verse fluence in bands of sensor radius The prediction of the
Hamburg model with and without an annealing period is also plotted. The Hamburg model prediction
line assumes that there are no surface current paths and a constant type inversion across the band, which
underestimates the leakage current at low irradiation. The two n-in-p sensors have measured EDV higher
than the n-in-n sensors for the same radiation delivered.

second metal layer readout lines crossing the strips in the R sensors. The effects were that signals
were induced in the readout lines producing small phantom clusters in the low radius strips and
also loss of charge from the main clusters at larger radius strips. The φ sensor geometries mean the
inner strip routing lines could be routed on top of the outer strip readout lines; so did not experience
these effects. As the outer part of the R sensors is crossed by more routing lines the effect was more
significant there, and caused efficiencies issues only for near perpendicular tracks.

The effect was not seen initially in irradiated sensors, but appeared after more than a year
of low luminosity data taking. It was then stable, has been added to the simulation and actively
monitored. The effects on the tracks were small and corrected using the normal corrections between
data and MC. The overall VELO performance was well monitored with the tracking efficiency and
track resolution as expected from the detector design [6].

5. Conclusion

LHCb had an excellent data taking period between 2009 and 2018, with the VELO providing
the precise tracking required for the physics program. It also demonstrated the effects of irradiation
delivered over nine years, with the effects of very occasional annealing. The detector had some
unexpected features but has still delivered the tracking performance required for the LHCb physics
program. The spare detector built in case of an LHC beam loss damaging the installed detector
has remained a display piece, and a replacement pixel detector is currently in construction for the
LHCb upgrade.
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